Part 3

Syntax analysis

Outline

1. Introduction

- 2. Context-free grammar
- 3. Top-down parsing
- 4. Bottom-up parsing
- 5. Conclusion and some practical considerations

Structure of a compiler

Syntax analysis

Goals:

- recombine the tokens provided by the lexical analysis into a structure (called *a syntax tree*)
- Reject invalid texts by reporting syntax errors.
- Like lexical analysis, syntax analysis is based on
 - the definition of valid programs based on some formal languages,
 - the derivation of an algorithm to detect valid words (programs) from this language
- Formal language: context-free grammars
- Two main algorithm families: Top-down parsing and Bottom-up parsing

Example

++ip;

Example

Reminder: grammar

- A grammar is a 4-tuple $G = (V, \Sigma, R, S)$, where:
 - V is an alphabet,
 - Σ ⊆ V is the set of terminal symbols (V − Σ is the set of nonterminal symbols),
 - $R \subseteq (V^+ \times V^*)$ is a finite set of production rules
 - $S \in V \Sigma$ is the start symbol.
- Notations:
 - ▶ Nonterminal symbols are represented by uppercase letters: A,B,...
 - ► Terminal symbols are represented by lowercase letters: *a*,*b*,...
 - Start symbol written as S
 - ► Empty word: *ϵ*
 - A rule $(\alpha, \beta) \in R : \alpha \to \beta$
 - Rule combination: $A \rightarrow \alpha | \beta$
- Example: $\Sigma = \{a, b, c\}, V \Sigma = \{S, R\}, R =$

$$egin{array}{cccc} S &
ightarrow & R \ S &
ightarrow & aSc \ R &
ightarrow & \epsilon \ R &
ightarrow & RbR \end{array}$$

Reminder: derivation and language

Definitions:

- v can be *derived in one step* from u by G (noted $v \Rightarrow u$) iff u = xu'y, v = xv'y, and $u' \rightarrow v'$
- v can be *derived in several steps* from u by G (noted $v \stackrel{*}{\Rightarrow} u$) iff $\exists k \ge 0$ and $v_0 \ldots v_k \in V^+$ such that $u = v_0, v = v_k, v_i \Rightarrow v_{i+1}$ for $0 \le i < k$
- The *language generated by a grammar G* is the set of words that can be derived from the start symbol:

$$L = \{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$$

Example: derivation of *aabcc* from the previous grammar

$$\underline{S} \Rightarrow a\underline{S}c \Rightarrow aa\underline{S}cc \Rightarrow aa\underline{R}cc \Rightarrow aa\underline{R}bRcc \Rightarrow aab\underline{R}cc \Rightarrow aabcc$$

Reminder: type of grammars

Chomsky's grammar hierarchy:

- Type 0: free or unrestricted grammars
- Type 1: context sensitive grammars
 - ▶ productions of the form $uXw \rightarrow uvw$, where u, v, w are arbitrary strings of symbols in V, with v non-null, and X a single nonterminal
- Type 2: context-free grammars (CFG)
 - ▶ productions of the form X → v where v is an arbitrary string of symbols in V, and X a single nonterminal.
- Type 3: regular grammars
 - Productions of the form X → a, X → aY or X → e where X and Y are nonterminals and a is a terminal (equivalent to regular expressions and finite state automata)

Context-free grammars

- Regular languages are too limited for representing programming languages.
- Examples of languages not representable by a regular expression:
 - $L = \{a^n b^n | n \ge 0\}$
 - ▶ Balanced parentheses
 L = {€, (), (()), ()(), ((())), (())()...}
 - Scheme programs
 - $L = \{1, 2, 3, \dots, (lambda(x)(+x1))\}$
- Context-free grammars are typically used for describing programming language syntaxes.
 - They are sufficient for most languages
 - They lead to efficient parsing algorithms

Context-free grammars for programming languages

- Nonterminals of the grammars are typically the tokens derived by the lexical analysis (in bold in rules)
- Divide the language into several syntactic categories (sub-languages)
- Common syntactic categories
 - Expressions: calculation of values
 - Statements: express actions that occur in a particular sequence
 - Declarations: express properties of names used in other parts of the program
 - $Exp \rightarrow Exp + Exp$
 - $Exp \rightarrow Exp Exp$
 - $Exp \rightarrow Exp * Exp$
 - $Exp \rightarrow Exp/Exp$
 - $Exp \rightarrow num$

 $Exp \rightarrow (Exp)$

 $Exp \rightarrow id$

- Stat \rightarrow id := Exp
- $\textit{Stat} \ \rightarrow \ \textit{Stat}; \textit{Stat}$
- Stat \rightarrow if Exp then Stat Else Stat
- Stat \rightarrow if Exp then Stat

Derivation for context-free grammar

- Like for a general grammar
- Because there is only one nonterminal in the LHS of each rule, their order of application does not matter
- Two particular derivations
 - left-most: always expand first the left-most nonterminal (important for parsing)
 - right-most: always expand first the right-most nonterminal (canonical derivation)

Examples

 $S \rightarrow aTb|c$ $T \rightarrow cSS|S$

w = accacbb

Left-most derivation: $S \Rightarrow aTb \Rightarrow acSSb \Rightarrow accSb \Rightarrow accaSb \Rightarrow accaTbb \Rightarrow accaSbb \Rightarrow accacbb$ Right-most derivation:

 $S \Rightarrow aTb \Rightarrow acSSb \Rightarrow acSaTbb \Rightarrow acSaSbb \Rightarrow acSacbb \Rightarrow acSacbb \Rightarrow acCacbb \Rightarrow acCacb$

Parse tree

A parse tree abstracts the order of application of the rules

- Each interior node represents the application of a production
- For a rule A → X₁X₂...X_k, the interior node is labeled by A and the children from left to right by X₁, X₂,...,X_k.
- Leaves are labeled by nonterminals or terminals and read from left to right represent a string generated by the grammar
- A derivation encodes how to produce the input
- A parse tree encodes the structure of the input
- Syntax analysis = recovering the parse tree from the tokens

Parse trees

Parse tree

Syntax analysis

Ambiguity

- The order of derivation does not matter but the chosen production rules do
- Definition: A CFG is ambiguous if there is at least one string with two or more parse trees
- Ambiguity is not problematic when dealing with flat strings. It is when dealing with language semantics

Detecting and solving Ambiguity

- There is no mechanical way to determine if a grammar is (un)ambiguous (this is an undecidable problem)
- In most practical cases however, it is easy to detect and prove ambiguity.

E.g., any grammar containing $N \rightarrow N\alpha N$ is ambiguous (two parse trees for $N\alpha N\alpha N$).

- How to deal with ambiguities?
 - Modify the grammar to make it unambiguous
 - Handle these ambiguities in the parsing algorithm
- Two common sources of ambiguity in programming languages
 - Expression syntax (operator precedences)
 - Dangling else

Operator precedence

This expression grammar is ambiguous

(it contains $N \rightarrow N \alpha N$)

• Parsing of 2 + 3 * 4

Operator associativity

- Types of operator associativity:
 - An operator ⊕ is left-associative if a ⊕ b ⊕ c must be evaluated from left to right, i.e., as (a ⊕ b) ⊕ c
 - An operator ⊕ is right-associative if a ⊕ b ⊕ c must be evaluated from right to left, i.e., as a ⊕ (b ⊕ c)
 - ▶ An operator \oplus is non-associative if expressions of the form $a \oplus b \oplus c$ are not allowed
- Examples:
 - \blacktriangleright and / are typically left-associative
 - + and * are mathematically associative (left or right). By convention, we take them left-associative as well
 - List construction in functional languages is right-associative
 - Arrows operator in C is right-associative (a->b->c is equivalent to a->(b->c))
 - In Pascal, comparison operators are non-associative (you can not write 2 < 3 < 4)

Rewriting ambiguous expression grammars

• Let's consider the following ambiguous grammar:

 $\begin{array}{rcl} E & \rightarrow & E \oplus E \\ E & \rightarrow & \operatorname{num} \end{array}$

■ If ⊕ is left-associative, we rewrite it as a left-recursive (a recursive reference only to the left). If ⊕ is right-associative, we rewrite it as a right-recursive (a recursive reference only to the right).

 \oplus left-associative \oplus right-associative

Mixing operators of different precedence levels

Introduce a different nonterminal for each precedence level

Non-ambiguous

Ambiguous	Exp -	\rightarrow	$E_{XD} + E_{XD}2$	Parse tree for $2 + 3 * 4$
$Exp \rightarrow Exp + E$	Exp Exp -	\rightarrow	Exp – Exp2	Exp
$Exp \rightarrow Exp - E$	Ехр Ехр-	\rightarrow	Exp2	Exp + $Exp2$
$Exp \rightarrow Exp * Exp$	xp Exp2 -	\rightarrow	Exp2 * Exp3	
$Exp \rightarrow Exp/Exp$	p Exp2 -	\rightarrow	Exp2/Exp3	Exp2 Exp2 * Exp3
$\textit{Exp} \rightarrow \text{num}$	Exp2 -	\rightarrow	Ехр3	Exp3 Exp3 4
$Exp \rightarrow (Exp)$	Ехр3 -	\rightarrow	num	
	Exp3 -	\rightarrow	(Exp)	2 3

Dangling else

Else part of a condition is typically optional

 $\begin{array}{rcl} \textit{Stat} & \rightarrow & \textit{if } \textit{Exp then } \textit{Stat } \textit{Else } \textit{Stat} \\ \textit{Stat} & \rightarrow & \textit{if } \textit{Exp then } \textit{Stat} \end{array}$

- How to match if p then if q then s1 else s2?
- Convention: else matches the closest not previously matched if.

Unambiguous grammar:

Stat	\rightarrow	Matched Unmatched
Matched	\rightarrow	if Exp then Matched else Matched
Matched	\rightarrow	"Any other statement"
Inmatched	\rightarrow	if Exp then Stat
Inmatched	\rightarrow	if Exp then Matched else Unmatched

End-of-file marker

- Parsers must read not only terminal symbols such as +,-, num , but also the end-of-file
- We typically use \$ to represent end of file
- If S is the start symbol of the grammar, then a new start symbol S' is added with the following rules $S' \rightarrow S$.

5	\rightarrow	E×p\$
Exp	\rightarrow	Exp + Exp2
Exp	\rightarrow	Exp – Exp2
Exp	\rightarrow	Exp2
Exp2	\rightarrow	Exp2 * Exp3
Exp2	\rightarrow	Exp2/Exp3
Exp2	\rightarrow	Exp3
Ехр3	\rightarrow	num
Exp3	\rightarrow	(Exp)

Non-context free languages

- Some syntactic constructs from typical programming languages cannot be specified with CFG
- Example 1: ensuring that a variable is declared before its use
 - $L_1 = \{wcw | w \text{ is in } (a|b)^*\}$ is not context-free
 - In C and Java, there is one token for all identifiers
- Example 2: checking that a function is called with the right number of arguments
 - ▶ $L_2 = \{a^n b^m c^n d^m | n \ge 1 \text{ and } m \ge 1\}$ is not context-free
 - ► In C, the grammar does not count the number of function arguments

$$stmt \rightarrow id (expr_list)$$

 $expr_list \rightarrow expr_list, expr$
 $| expr$

These constructs are typically dealt with during semantic analysis

Backus-Naur Form

- A text format for describing context-free languages
- We ask you to provide the source grammar for your project in this format
- Example:

<expression></expression>	::= <term> <term> "+" <expression></expression></term></term>
<term></term>	::= <factor> <factor> "*" <term></term></factor></factor>
<factor></factor>	::= <constant> <variable> "(" <expression> ")"</expression></variable></constant>
<variable></variable>	::= "x" "y" "z"
<constant></constant>	::= <digit> <digit> <constant></constant></digit></digit>
<digit></digit>	::= "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

More information: http://en.wikipedia.org/wiki/Backus-Naur_form

Outline

1. Introduction

- 2. Context-free grammar
- 3. Top-down parsing
- 4. Bottom-up parsing
- 5. Conclusion and some practical considerations

Syntax analysis

Goals:

- Checking that a program is accepted by the context-free grammar
- Building the parse tree
- Reporting syntax errors
- Two ways:
 - Top-down: from the start symbol to the word
 - Bottom-up: from the word to the start symbol

Top-down and bottom-up: example

Grammar:

$$S \rightarrow AB$$

 $A \rightarrow aA|\epsilon$
 $B \rightarrow b|bB$

Top-down	parsing of aaab
S	
AB	S ightarrow AB
aAB	A ightarrow aA
aaAB	A ightarrow aA
aaaAB	A ightarrow aA
aaa ϵB	$A ightarrow \epsilon$
aaab	B ightarrow b

Bottom-ı	up parsing of <i>aaab</i>
aaab	
aaa ϵb	(insert ϵ)
aaaAb	$A \rightarrow \epsilon$
aaAb	A ightarrow aA
aAb	A ightarrow aA
Ab	A ightarrow aA
AB	B ightarrow b
S	S ightarrow AB

A naive top-down parser

- A very naive parsing algorithm:
 - Generate all possible parse trees until you get one that matches your input
 - To generate all parse trees:
 - 1. Start with the root of the parse tree (the start symbol of the grammar)
 - 2. Choose a non-terminal A at one leaf of the current parse tree
 - 3. Choose a production having that non-terminal as LHS, eg., $A \rightarrow X_1 X_2 \dots X_k$
 - 4. Expand the tree by making X_1, X_2, \ldots, X_k , the children of A.
 - 5. Repeat at step 2 until all leaves are terminals
 - 6. Repeat the whole procedure by changing the productions chosen at step 3

(Note: the choice of the non-terminal in Step 2 is irrevelant for a context-free grammar)

This algorithm is very inefficient, does not always terminate, etc.

Top-down parsing with backtracking

Modifications of the previous algorithm:

- 1. Depth-first development of the parse tree (corresponding to a left-most derivation)
- 2. Process the terminals in the RHS during the development of the tree, checking that they match the input
- 3. If they don't at some step, stop expansion and restart at the previous non-terminal with another production rules (backtracking)
- Depth-first can be implemented by storing the unprocessed symbols on a stack
- Because of the left-most derivation, the inputs can be processed from left to right

Backtracking example

	Stack	Inputs	Action
	S	bcd	Try $S \rightarrow bab$
	bab	bcd	match <i>b</i>
$S \rightarrow bab$	ab	cd	dead-end, backtrack
$S \rightarrow bA$	S	bcd	Try $S \rightarrow bA$
A d	bA	bcd	match <i>b</i>
$A \rightarrow u$	A	cd	$Try\; A \to d$
$A \rightarrow cA$	d	cd	dead-end, backtrack
	A	cd	Try $A \rightarrow cA$
	сA	cd	match <i>c</i>
w - bcd	A	d	$Try\; A \to d$
W - Bea	d	d	match <i>d</i>
			Success!

Top-down parsing with backtracking

General algorithm (to match a word w): Create a stack with the start symbol X = POP()a = GETNEXTTOKEN()while (True) if (X is a nonterminal) Pick next rule to expand $X \rightarrow Y_1 Y_2 \dots Y_k$ Push $Y_k, Y_{k-1}, \ldots, Y_1$ on the stack X = POP()elseif (X == \$ and a == \$)Accept the input elseif (X == a)a = GETNEXTTOKEN()X = POP()else

Backtrack

- Ok for small grammars but still untractable and very slow for large grammars
- Worst-case exponential time in case of syntax error

Another example

	Stack	Inputs	Action
	S	accbbadbc	Try $S \rightarrow aSbT$
$S \rightarrow aSDI$	aSbT	accbbadbc	match <i>a</i>
$S \rightarrow cT$	SbT	accbbadbc	Try $S ightarrow aSbT$
$S \rightarrow d$	aSbTbT	accbbadbc	match <i>a</i>
	SbTbT	ccbbadbc	Try $S ightarrow cT$
$I \rightarrow aI$	cTbTbT	ccbbadbc	match <i>c</i>
$T \rightarrow bS$	TbTbT	cbbadbc	Try $T ightarrow c$
	cbTbT	cbbadbc	match <i>cb</i>
$I \rightarrow C$	TbT	badbc	Try $T o bS$
	bSbT	badbc	match <i>b</i>
	SbT	adbc	Try $S \rightarrow aSbT$
	aSbT	adbc	match <i>a</i>
	С	С	match <i>c</i>
w = accbbadbc			Success!

Predictive parsing

- Predictive parser:
 - In the previous example, the production rule to apply can be predicted based solely on the next input symbol and the current nonterminal
 - Much faster than backtracking but this trick works only for some specific grammars
- Grammars for which top-down predictive parsing is possible by looking at the next symbol are called *LL*(1) grammars:
 - L: left-to-right scan of the tokens
 - L: leftmost derivation
 - (1): One token of lookahead
- Predicted rules are stored in a parsing table *M*:
 - ► M[X, a] stores the rule to apply when the nonterminal X is on the stack and the next input terminal is a

Example: parse table

$$\begin{array}{l} \mathsf{S} \to \mathsf{E} \$ \\ \mathsf{E} \to \mathtt{int} \\ \mathsf{E} \to (\mathsf{E} \ \mathsf{Op} \ \mathsf{E}) \\ \mathsf{Op} \to + \\ \mathsf{Op} \to \star \end{array}$$

	int	()	+	*	\$
S	E\$	E\$				
Е	int	(E Op E)				
Ор				+	*	

Example: successfull parsing

						ĺ	S	(int +	(int *	int))	\$
1. S → E \$						ł	E\$	(int +	(int *	int))	\$
	2. E	\to	in	t		İ	(E Op E) \$	(int +	(int *	int))	\$
	3 F	:	٢F	On	F١	İ	E Op E) \$	int +	(int *	int))	\$
	ο. L Λ C	- <i>·</i>		Οp	-,		int Op E)\$	int +	(int *	int))	\$
	4. C	- Y	→ +				Op E) \$	+	(int *	int))	\$
	5. C)p –	→ -				+ E)\$	+	(int *	int))	\$
					-		E)\$		(int *	int))	\$
	int	()	+	*	\$	(E Op E))\$		(int *	int))	\$
C	4	4					E Op E))\$		int *	int))	\$
5	1	I					int Op E))\$		int *	int))	\$
E	2	3					Op E))\$		*	int))	\$
_		-			-		*E))\$		*	int))	\$
Op				4	5		E))\$			int))	\$
				•			int))\$			int))	\$
))\$))	\$
)\$)	\$
						Ī	\$				\$

Example: erroneous parsing

1.
$$S \rightarrow E$$
\$
2. $E \rightarrow int$
3. $E \rightarrow (E \text{ Op } E)$
4. $\text{ Op } \rightarrow +$
5. $\text{ Op } \rightarrow -$

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E) \$	int (int))\$
int Op E)\$	int (int))\$
Op E) \$	(int))\$

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

Table-driven predictive parser

(Dragonbook)

Table-driven predictive parser

```
Create a stack with the start symbol
X = POP()
a = GETNEXTTOKEN()
while (True)
     if (X is a nonterminal)
         if (M[X, a] == NULL)
              Frror
         elseif (M[X, a] = X \rightarrow Y_1 Y_2 \dots Y_k)
              Push Y_k, Y_{k-1}, \ldots, Y_1 on the stack
              X = POP()
     elseif (X == \$ and a == \$)
         Accept the input
     elseif (X == a)
         a = \text{GETNEXTTOKEN}()
         X = POP()
     else
         Frror
```

LL(1) grammars and parsing

Three questions we need to address:

- How to build the table for a given grammar?
- How to know if a grammar is LL(1)?
- How to change a grammar to make it LL(1)?

Building the table

- It is useful to define three functions (with A a nonterminal and α any sequence of grammar symbols):
 - Nullable(α) is true if $\alpha \stackrel{*}{\Rightarrow} \epsilon$
 - *First*(α) returns the set of terminals c such that α ⇒ cγ for some (possibly empty) sequence γ of grammar symbols
 - ► Follow(A) returns the set of terminals a such that $S \Rightarrow \alpha Aa\beta$, where α and β are (possibly empty) sequences of grammar symbols

 $(c \in First(A) \text{ and } a \in Follow(A))$

Building the table from First, Follow, and Nullable

To construct the table:

- Start with the empty table
- For each production $A \rightarrow \alpha$:
 - add $A \rightarrow \alpha$ to M[A, a] for each terminal a in $First(\alpha)$
 - If $Nullable(\alpha)$, add $A \to \alpha$ to M[A, a] for each a in Follow(A)

First rule is obvious. Illustration of the second rule:

LL(1) grammars

Three situations:

- ► *M*[*A*, *a*] is empty: no production is appropriate. We can not parse the sentence and have to report a syntax error
- ► *M*[*A*, *a*] contains one entry: perfect !
- ► M[A, a] contains two entries: the grammar is not appropriate for predictive parsing (with one token lookahead)
- **Definition:** A grammar is LL(1) if its parsing table contains at most one entry in each cell or, equivalently, if for all production pairs $A \rightarrow \alpha | \beta$
 - $First(\alpha) \cap First(\beta) = \emptyset$,
 - $Nullable(\alpha)$ and $Nullable(\beta)$ are not both true,
 - if $Nullable(\beta)$, then $First(\alpha) \cap Follow(A) = \emptyset$

• Example of a non LL(1) grammar:

$$\begin{array}{cccc} S &
ightarrow & Ab \ A &
ightarrow & b \ A &
ightarrow & \epsilon \end{array}$$

Computing Nullable

Algorithm to compute Nullable for all grammar symbols

Initialize Nullable to False. repeat for each production $X \rightarrow Y_1 Y_2 \dots Y_k$ if $Y_1 \dots Y_k$ are all nullable (or if k = 0) Nullable(X) = True until Nullable did not change in this iteration.

Algorithm to compute *Nullable* for any string $\alpha = X_1 X_2 \dots X_k$:

if $(X_1 \dots X_k \text{ are all nullable})$ $Nullable(\alpha) = True$ else

 $Nullable(\alpha) = False$

Computing First

Algorithm to compute First for all grammar symbols

Initialize First to empty sets. for each terminal Z First(Z) = {Z} repeat for each production $X \rightarrow Y_1 Y_2 \dots Y_k$ for i = 1 to k if $Y_1 \dots Y_{i-1}$ are all nullable (or i = 1) First(X) = First(X) \cup First(Y_i) until First did not change in this iteration.

Algorithm to compute *First* for any string $\alpha = X_1 X_2 \dots X_k$:

Initialize
$$First(\alpha) = \emptyset$$

for $i = 1$ to k
if $X_1 \dots X_{i-1}$ are all nullable (or $i = 1$)
 $First(\alpha) = First(\alpha) \cup First(X_i)$

Computing Follow

To compute Follow for all nonterminal symbols

Initialize Follow to empty sets.

repeat

for each production $X \rightarrow Y_1 Y_2 \dots Y_k$ for i = 1 to k, for j = i + 1 to kif $Y_{i+1} \dots Y_k$ are all nullable (or i = k) Follow $(Y_i) = Follow(Y_i) \cup Follow(X)$ if $Y_{i+1} \dots Y_{j-1}$ are all nullable (or i + 1 = j) Follow $(Y_i) = Follow(Y_i) \cup First(Y_j)$

until Follow did not change in this iteration.

Example

Compute the parsing table for the following grammar:

Example

Nonterminals	Nullable	First	Follow
S	False	$\{(, id, num \}$	Ø
E	False	$\{(, id , num \}$	{) , \$ }
E'	True	$\{+, -\}$	{) , \$ }
Т	False	$\{(, id, num \}$	$\{), +, -, \$\}$
Τ'	True	$\{*, /\}$	$\{), +, -, \$\}$
F	False	$\{(, id , num \}$	$\{), *, /, +, -, \$\}$

LL(1) parsing summary so far

Construction of a LL(1) parser from a CFG grammar

- Eliminate ambiguity
- Add an extra start production $S' \rightarrow S$ \$ to the grammar
- Calculate *First* for every production and *Follow* for every nonterminal
- Calculate the parsing table
- Check that the grammar is *LL*(1)

Next course:

- Transformations of a grammar to make it LL(1)
- Recursive implementation of the predictive parser
- Bottom-up parsing techniques