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Playing with switches

to approximate a function

Let f : [0, T ] → R be a given function (signal)

g : R → R be another given function (filter)

with g(t) = 0 for t ≤ 0

δ := T/n, where n ∈ Z++ (time-step)

We want to approximate f as well as possible by

f̂x(t) :=
n
∑

i=1

xig(t− (i− 1)δ), with xi ∈ {0,1}.

◮ ||f − f̂x||22 =

∫ T

0
(f(t)− f̂x(t))

2dt → min

⇔ min{xTQx+2cTx+ d : x ∈ {0,1}n}

Qij =
∫ T

0
g(t− (i− 1)δ)g(t− (j − 1)δ)dt, ci =

∫ T

0
g(t− (i− 1)δ)f(t)dt
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Playing with switches

to approximate a function

Let f : [0, T ] → R be a given function (signal)

g : R → R be another given function (filter)

with g(t) = 0 for t ≤ 0

δ := T/n, where n ∈ Z++ (time-step)

We want to approximate f as well as possible by

f̂x(t) :=
n
∑

i=1

xig(t− (i− 1)δ), with xi ∈ {0,1}.

◮ ||f − f̂x||22 =

∫ T

0
(f(t)− f̂x(t))

2dt → min

⇔ min{xTQx+2cTx+ d : x ∈ {0,1}n}

◮ We have a convex objective with binary variables.



Our problem is very hard

f(x∗) := minx∈F f(x)

⋆ F = P ∩ Z
n,

where P is a polytope;

⋆ f : Rn → R is convex.
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P

x∗ can be arbitrarily far from the continuous minimum



A way to measure how hard our problem is

f(x∗) := minx∈F f(x)

⋆ F = P ∩ Z
n,

where P is a polytope;

⋆ f : Rn → R is convex.

We assume that f is strongly convex and L-smooth:

for every x, y ∈ R
n:

l

2
||x− y||22 ≤ f(y)− f(x)− f ′(x)T (y − x) ≤

L

2
||x− y||22.

◮ L/l bounds the asphericity of level sets.

A trivial enumeration algorithm would take

O(min{(L/l)n,diameter(F)n}) evaluations of f .

◮ In fact, the complexity of our methods depends on L− l.
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Our problem is very hard

f(x∗) := minx∈F f(x)

⋆ F = P ∩ Z
n,

where P is a polytope;

⋆ f : Q → R is convex.

◮ Even with f linear, the problem is NP-Hard

◮ Even with f quadratic and F ⊆ {0,1}n,

the problem is hard, independently of the NP-Conjecture.

Consider n = 4m, c ∈ {2,3}, γ = 5m− 1,

F ⊆ {0,1}n be an independence system, and

min{f(x) = n2(cTx− γ)2 + 1
Tx : x ∈ F}.

F is presented by an LP solver:

taking as input v ∈ R
n, returns argmaxx∈F vTx.

Note: We have L/l ≤ 9n3 +1.
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Our problem is very hard

f(x∗) := minx∈F f(x)

⋆ F = P ∩ Z
n,

where P is a polytope;

⋆ f : Q → R is convex.

◮ Even with f linear, the problem is NP-Hard

◮ Even with f quadratic and F ⊆ {0,1}n,

the problem is hard, independently of the NP-Conjecture.

Consider n = 4m, c ∈ {2,3}, γ = 5m− 1,

F ⊆ {0,1}n be an independence system, and

min{f(x) = n2(cTx− γ)2 + 1
Tx : x ∈ F}.

Theorem 1 Any method that solves less than
(

2m
m+1

)

≥ 2m

LPs on F fails to find an x̂ for which f(x̂)− f(x∗) ≤ n2−n.



Very few methods exist for our problem

f(x∗) := minx∈F f(x)

⋆ F = P ∩ Z
n,

where P is a polytope;

⋆ f : Rn → R is convex.

1. Branch and bound approach (Gupta, Ravindran, Leyffer)

Branching by fixing some variables.

Lower bounds from continuous relaxation

of all the other ones, with possibly extra cuts

2. Outer Approximation (Duran, Grossman)

(assumes that we can solve the problem with f linear)

f is replaced by a piecewise linear model,

which is minimized in F, then enriched.



Our methods use simple ideas

from Convex Optimization

f(x∗) := minx∈Q f(x)

⋆ Q ⊆ R
n is convex

and closed;

⋆ f : Rn → R is convex.

Subgradient method:

Select x0 ∈ Q

for k = 0,1,2, . . .

Choose hk > 0, compute f ′(xk) ∈ ∂f(xk)

Set xk+1 := πQ(xk − hkf
′(xk))

= argmin
y∈Q

{

f ′(xk)(y − xk) +
1

2hk
||y − xk||

2
2

}

.

◮ Guaranteed decrease with hk = 1/L,

theoretically the best choice.



A substitute for the subgradient step

f(x∗) := minx∈F f(x)

⋆ F = P ∩ Z
n,

where P is a polytope;

⋆ f : Rn → R is convex.

Gradient method:

xk+1 := argminy∈Q

{

f ′(xk)(y − xk) +
L
2 ||y − xk||

2
2

}

.

Our strategy:

xk+1 := argminy∈F

{

f ′(xk)(y − xk) +
L
2 ||y − xk||

2
2

}

.

◮ We allow for a step-size τ larger than 1/L.

◮ This quadratic problem can be very hard to solve exactly

◮ xk+1 ∈ F and gxk(xk+1) ≤ (1− α)miny∈F gxk(y) < 0

with gxk(y) := f ′(xk)(y − xk) +
1
2τ ||y − xk||

2
2.
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If we don’t move anymore, we are done

Select x0 ∈ F, 0 ≤ α < 1, l ≤ τ ≤ L, N ∈ Z+

for k = 0,1, . . . , N − 1,

Compute xk+1 such that

gxk(xk+1) ≤ (1− α) argminy∈F gxk(y)

if xk+1 ∈ {x0, . . . , xk}

STOP

return the best x̂ ∈ {x0, . . . , xN}.

Theorem 2 If τ = 1/l and xk+1 = xk, then f(xk) = f(x∗).



Our method can solve

the problem approximately

Select x0 ∈ F, 0 ≤ α < 1, 1/L ≤ τ ≤ 1/l, N ∈ Z+
for k = 0,1, . . . , N − 1,

Compute xk+1 such that

gxk(xk+1) ≤ (1− α) argminy∈F gxk(y)
if xk+1 ∈ {x0, . . . , xk}

STOP

return the best x̂ ∈ {x0, . . . , xN}.

Theorem 3 If α > 0, η > 0, δF = diameter(F) and

N :=

⌈

1

ln(1/α)
ln

(

max

{

1,
f(x0)− f(x∗)

η

})⌉

,

then f(x̂)− f(x∗) ≤
L− l

2(1− α)
δ2F + η.



The subproblem can sometimes be solved

We know: quadratic problems on F can be hard

Theorem 4 (Heinz) We can solve the subproblem

exactly (α = 0) in sO(1)2O(n) arithmetic operations,

where s is its binary encoding length.

◮ If F ⊆ {0,1}n, the subproblem is linear (as x2i = xi).

We can solve it efficiently for classes of problems

where IP is easy (e.g. matroid problems, matchings)

◮ Many quadratic problems admit a fast approximate method

with guaranteed α. (e.g. binary knapsack problems)
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A delicate issue: avoiding cycling

Guarantee: f(x̂)− f(x∗) ≤ L−l
1−αδ

2
F

after a known number of steps.

Let’s keep it running a bit more, hoping for the best.

However, we can get a previously visited point (cycling)

Remedy: Assume f(x) ∈ Z for x ∈ F and set τ = 1/l.

Instead of computing min{gxk(x) : x ∈ F}, do:

min{gxk(x) : gxi(x) ≤ −1 for 0 ≤ i ≤ k, x ∈ F}

◮ Never generates twice the same point

◮ Computes x∗ in O(cf(L− l)δ2FsO(1)),

where cf = maxα∈Z |F ∩ {x : f(x) = α}|.

◮ Modest, but can be better than an enumeration (O(δnF)).
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2
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Let’s keep it running a bit more, hoping for the best.

However, we can get a previously visited point (cycling)

Remedy: Assume f(x) ∈ Z for x ∈ F and set τ = 1/l.

Instead of computing min{gxk(x) : x ∈ F}, do:

min{gxk(x) : gxi(x) ≤ −1 for 0 ≤ i ≤ k, x ∈ F}

◮ Never generates twice the same point

◮ Subproblems polynomially solvable

for some well-structured binary problems

(e.g. when F ⊆ {0,1}n is a vectorial matroid)



Conclusion and outlook 1

◮ The field is almost new.

◮ Convex integer problems are intrinsically hard.

◮ Our methods provide polynomial algorithms

for instances where quadratic problems

can be easily minimized on their feasible set.

◮ We have complexity and accuracy guarantees

when quadratic functions can only be

solved approximately.

◮ The mixed-integer case remains largely unaddressed



Conclusion and outlook 2

◮ We are developing new methods based

on the existence of a level set oracle:

Fix α ≥ 0, δ ≥ 0. For every x ∈ R
n,

the oracle finds x̂ ∈ Z
n

such that f(x̂) ≤ (1 + α)f(x) + δ,

or declares it does not exists.

◮ They can be extended to general lattices.

◮ They allow us to solve 2 dim. problems

polynomially in ln(L/l).

◮ They seem promising to attack

mixed-integer convex problems.



Thank you


