Liege University: Francqui Chair 2011-2012

# Lecture 5: Algorithmic models of human behavior

#### Yurii Nesterov, CORE/INMA (UCL)

March 23, 2012

# Main problem with the Rational Choice

- Rational choice assumption is introduced for better understanding and predicting the human behavior.
- It forms the basis of Neoclassical Economics (1900).
- The player (*Homo Economicus* = HE) wants to maximize his *utility function* by an appropriate adjustment of the consumption pattern.
- As a consequence, we can speak about *equilibrium* in economical systems.
- Existing literature is immense. It concentrates also on ethical, moral, religious, social, and other consequences of rationality.

(HE = super-powerful aggressively selfish immoral individualist.)

NB: The only missing topic is the Algorithmic Aspects of rationality.

## What do we know now?

- Starting from 1977 (Complexity Theory, Nemirovski & Yudin), we know that optimization problems in general are *unsolvable*.
- They are very difficult (and will be always difficult) for computers, independently on their speed.
- How they can be solved by us, taking into account our natural weakness in arithmetics?

**NB:** Mathematical consequences of unreasonable assumptions can be disastrous.

**Perron paradox:** The maximal integer is equal to one. **Proof:** Denote by *N* the maximal integer. Then

$$1 \le N \le N^2 \le N.$$

Hence, N = 1.

### What we do not know

- In which sense the human beings can solve the optimization problems?
- What is the accuracy of the solution?
- What is the convergence rate?

Main question: What are the optimization *methods*?

#### NB:

- Forget about Simplex Algorithm and Interior Point Methods!
- Be careful with gradients (dimension, non-smoothness).

## Outline

1 Intuitive optimization (Random Search)

2 Rational activity in stochastic environment (Stochastic Optimization)



# Intuitive Optimization

**Problem:**  $\min_{x \in \mathbb{R}^n} f(x)$ , where x is the *consumption pattern*.

#### Main difficulties:

- High dimension of x (difficult to evaluate/observe).
- Possible non-smoothness of f(x).

Theoretical advice: apply gradient method

$$x_{k+1} = x_k - hf'(x_k).$$

(In the space of all available products!)

Hint: we live in an uncertain world.

### Gaussian smoothing

Let  $f : E \to R$  be differentiable along any direction at any  $x \in E$ . Let us form its *Gaussian approximation* 

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} ||u||^2} du,$$

where  $\kappa \stackrel{\text{def}}{=} \int_{E} e^{-\frac{1}{2} ||u||^2} du = (2\pi)^{n/2}$ . In this definition,  $\mu \ge 0$  plays a role of the *smoothing parameter*.

Why this is interesting? Define  $y = x + \mu u$ . Then

$$f_{\mu}(x) = \frac{1}{\mu^{n_{\kappa}}} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} ||y-x||^{2}} dy.$$
 Hence,  
$$\nabla f_{\mu}(x) = \frac{1}{\mu^{n+2_{\kappa}}} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} ||y-x||^{2}} (y-x) dy$$

$$= \frac{1}{\mu\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}||u||^{2}} u \, du \stackrel{(!)}{=} \frac{1}{\kappa} \int_{E} \frac{f(x+\mu u)-f(x)}{\mu} e^{-\frac{1}{2}||u||^{2}} u \, du.$$

## Properties of Gaussian smoothing

- If f is convex, then  $f_{\mu}$  is convex and  $f_{\mu}(x) \ge f(x)$ .
- If  $f \in C^{0,0}$ , then  $f_{\mu} \in C^{0,0}$  and  $L_0(f_{\mu}) \le L_0(f)$ .
- If  $f \in C^{0,0}(E)$ , then,  $|f_{\mu}(x) f(x)| \le \mu L_0(f) n^{1/2}$ .

#### Random gradient-free oracle:

• Generate random  $u \in E$ .

• Return 
$$g_{\mu}(x) = \frac{f(x+\mu u)-f(x)}{\mu} \cdot u$$
.

If  $f \in C^{0,0}(E)$ , then  $E_u(\|g_\mu(x)\|_*^2) \le L_0^2(f)(n+4)^2$ .

# Random intuitive optimization

**Problem:**  $f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$ , where  $Q \subseteq E$  is a closed convex set, and f is a nonsmooth convex function.

Let us choose a sequence of positive steps  $\{h_k\}_{k\geq 0}$ .

Method  $\mathcal{RS}_{\mu}$ : Choose  $x_0 \in Q$ . For  $k \ge 0$ : a). Generate  $u_k$ . b). Compute  $\Delta_k = \frac{1}{\mu} [f(x_k + \mu u_k) - f(x_k)]$ . c). Compute  $x_{k+1} = \pi_Q (x_k - h_k \Delta_k u_k)$ .

**NB:**  $\mu$  can be arbitrary small.

### Convergence results

This method generates random 
$$\{x_k\}_{k\geq 0}$$
. Denote  $S_N = \sum_{k=0}^N h_k$ ,  
 $\mathcal{U}_k = (u_0, \dots, u_k), \ \phi_0 = f(x_0), \ \text{and} \ \phi_k \stackrel{\text{def}}{=} E_{\mathcal{U}_{k-1}}(f(x_k)), \ k \geq 1.$ 

**Theorem:** Let  $\{x_k\}_{k\geq 0}$  be generated by  $\mathcal{RS}_{\mu}$  with  $\mu > 0$ . Then,

$$\sum_{k=0}^{N} \frac{h_k}{S_N} (\phi_k - f^*) \leq \mu L_0(f) n^{1/2} + \frac{1}{2S_N} \|x_0 - x^*\|^2 + \frac{(n+4)^2}{2S_N} L_0^2(f) \sum_{k=0}^{N} h_k^2.$$

In order to guarantee  $E_{\mathcal{U}_{N-1}}(f(\hat{x}_N)) - f^* \leq \epsilon$ , we choose

$$\mu = \frac{\epsilon}{2L_0(f)n^{1/2}}, \quad h_k = \frac{R}{(n+4)(N+1)^{1/2}L_0(f)}, \quad N = \frac{4(n+4)^2}{\epsilon^2}L_0^2(f)R^2.$$

### Interpretation

- Disturbance  $\mu u_k$  may be caused by external random factors.
- For small  $\mu$ , the sign and the value of  $\Delta_k$  can be treated as an *intuition*.
- We use a random experience accumulated by a very small shift along a random direction.
- The reaction steps  $h_k$  are big. (Emotions?)
- The dimension of *x* slows down the convergence.

**Main ability:** to fulfil a completely opposite action as compared to the proposed one. (Needs training.)

**NB:** Optimization method has a form of emotional reaction.

It is efficient in the absence of a stable coordinate system.

# Optimization in Stochastic Environment

**Problem:** min 
$$_{x \in Q} [\phi(x) = E(f(x,\xi)) \equiv \int_{\Omega} f(x,\xi) p(\xi) d\xi ]$$
, where

• 
$$f(x,\xi)$$
 is convex in  $x$  for any  $\xi \in \Omega \subseteq R^m$ ,

- Q is a closed convex set in R<sup>n</sup>,
- $p(\xi)$  is the density of random variable  $\xi \in \Omega$ .

**Assumption:** We can generate a sequence of random events  $\{\xi_i\}$ :  $\frac{1}{N}\sum_{i=1}^{N} f(x,\xi_i) \xrightarrow{N \to \infty} E(f(x,\xi)), x \in Q.$ 

**Goal:** For  $\epsilon > 0$  and  $\phi^* = \min_{x \in Q} \phi(x)$  find  $\overline{x} \in Q$ :  $\phi(\overline{x}) - \phi^* \le \epsilon$ .

**Main trouble:** For finding  $\delta$ -approximation to  $\phi(x)$ , we need  $O\left(\left(\frac{1}{\delta}\right)^m\right)$  computations of  $f(x,\xi)$ .

## Stochastic subgradients (Ermoliev, Wetz, 70's)

**Method:** Fix some  $x_0 \in Q$  and h > 0. For  $k \ge 0$ , repeat:

generate  $\xi_k$  and update  $x_{k+1} = \pi_Q (x_k - h \cdot f'(x_k, \xi_k)).$ Output:  $\bar{x} = \frac{1}{N+1} \sum_{k=0}^N x_k.$ 

Interpretation: Learning process in stochastic environment.

**Theorem:** For 
$$h = \frac{R}{L\sqrt{N+1}}$$
 we get  $E(\phi(\bar{x})) - \phi^* \le \frac{LR}{\sqrt{N+1}}$ 

**NB:** This is an estimate for the *average* performance.

**Hint:** For us, it is enough to ensure a <u>Confidence Level</u>  $\beta \in (0, 1)$ :

$$\begin{array}{l} \displaystyle \operatorname{\mathsf{Prob}}\left[ \ \phi(\bar{x}) \geq \phi^* + \epsilon V_\phi \ \right] \leq 1 - \beta, \\ \displaystyle \operatorname{where} \ V_\phi = \max_{x \in \mathcal{Q}} \phi(x) - \phi^*. \end{array}$$

In the real world we *always* apply solutions with  $\beta < 1$ .

### What do we have now?

After N-steps we observe a *single* implementation of the random variable  $\bar{x}$  with  $E(\phi(\bar{x})) - \phi^* \leq \frac{LR}{\sqrt{N+1}}$ .

#### What about the level of confidence?

1. For random  $\psi \ge 0$  and T > 0 we have

$$E(\psi) = \int \psi = \int_{\substack{\psi \ge T \\ \psi \ge T}} \psi + \int_{\substack{\psi < T \\ \psi < T}} \psi \ge T \cdot \operatorname{Prob} [\psi \ge T].$$
2. With  $\psi = \phi(\bar{x}) - \phi^*$  and  $T = \epsilon V_{\phi}$  we need
$$\frac{1}{\epsilon V_{\phi}} [E(\phi(\bar{x})) - \phi^*] \le \frac{LR}{\epsilon V_{\phi}\sqrt{N+1}} \le 1 - \beta.$$
Thus, we can take
$$N + 1 = \frac{1}{\epsilon^2 (1-\beta)^2} \left(\frac{LR}{V_{\phi}}\right)^2.$$

**NB:** 1. For personal needs, this may be OK. What about  $\beta \rightarrow 1$ ? 2. How we increase the confidence level in our life?

Ask for advice as many persons as we can!

# Pooling the experience

Individual learning process (Forms opinion of one expert)  
Choose 
$$x_0 \in Q$$
 and  $h > 0$ . For  $k = 0, ..., N$  repeat  
generate  $\xi_k$ , and set  $x_{k+1} = \pi_Q(x_k - hf'(x_k, \xi_k))$ .  
Compute  $\bar{x} = \frac{1}{N+1} \sum_{k=0}^N x_k$ .

Pool the experience:

For 
$$j = 1, ..., K$$
 compute  $\bar{x}_j$ . Generate the output  $\hat{x} = \frac{1}{K} \sum_{j=1}^{K} \bar{x}_j$ .

**Note:** All learning processes start from the same  $x_0$ .

## Probabilistic analysis

**Theorem.** Let  $Z_j \in [0, V]$ , j = 1, ..., K be independent random variables with the same average  $\mu$ . Then for  $\hat{Z}_K = \frac{1}{K} \sum_{j=1}^K Z_j$ **Prob**  $\left[\hat{Z}_k \ge \mu + \hat{\epsilon}\right] \le \exp\left(-\frac{2\hat{\epsilon}^2 K}{V^2}\right)$ .

#### Corollary.

Let us choose  $K = \frac{2}{\epsilon^2} \ln \frac{1}{1-\beta}$ ,  $N = \frac{4}{\epsilon^2} \left(\frac{LR}{V_{\phi}}\right)^2$ , and  $h = \frac{R}{L\sqrt{N+1}}$ . Then the pooling process implements an  $(\epsilon, \beta)$ -solution. **Note:** Each 9 in  $\beta = 0.9 \cdots 9$  costs  $\frac{4.6}{2}$  experts.

# Comparison ( $\epsilon$ is not too small $\equiv Q$ is reasonable)

| Denote $\rho = \frac{LR}{V_{\phi}}$ | Single Expert (SE)                     | Pooling Experience (PE)                      |
|-------------------------------------|----------------------------------------|----------------------------------------------|
| Number of experts                   | 1                                      | $\frac{2}{\epsilon^2} \ln \frac{1}{1-\beta}$ |
| Length of life                      | $rac{ ho^2}{\epsilon^2(1-eta)^2}$     | $\frac{4\rho^2}{\epsilon^2}$                 |
| Computational efforts               | $\frac{\rho^2}{\epsilon^2(1-\beta)^2}$ | $rac{8 ho^2}{\epsilon^4}\lnrac{1}{1-eta}$  |

- Reasonable computational expenses (for Multi-D Integrals)
- Number of experts does not depend on dimension.

#### Differences

- For low level of confidence, SE may be enough.
- High level of confidence needs independent expertise.
- Average experience of young population has much higher level of confidence than the experience of a long-life wizard.
- In PE, the confidence level of "experts" is only  $\frac{1}{2}$  (!).

# Why this can be useful?

- Understanding of the actual role of existing social an political phenomena (education, medias, books, movies, theater, elections, etc.)
- Future changes (Internet, telecommunications)
- Development of new averaging instruments (Theory of expertise: mixing opinion of different experts, competitions, etc.)

### Conscious versus subconscious

**NB:** Conscious behavior can be irrational.

Subconscious behavior is often rational.

- Animals.
- Children education: First level of knowledge is subconscious.
- Training in sport (optimal technique  $\Rightarrow$  subconscious level).

#### Examples of subconscious estimates:

- Mental "image processing".
- Tracking the position of your body in space.
- Regular checking of your status in the society (?)

**Our model:** Conscious behavior based on dynamically updated subconscious estimates.

# Model of consumer: What is easy for us?

**Question 1:** 123 \* 456 = ?

Question 2: How often it rains in Belgium?

#### Easy questions:

- average salary,
- average gas consumption of your car,
- average consumption of different food,
- average commuting time,

and many other (survey-type) questions.

#### Main abilities of anybody:

1. Remember the past experience (often by *averages*).

**2.** Estimate *probabilities* of some future events, taking into account their *frequencies* in the past.

Guess: We are <u>Statistical</u> Homo Economicus? (SHE)

# Main features of SHE

Main passion: Observations.

#### Main abilities:

- Can select the best variant from several possibilities.
- Can compute average characteristics for some actions.
- Can compute frequencies of some events in the past.
- Can estimate the "faire" prices for products.

**As compared with HE:** A huge step back in the computational power and informational support.

Theorem: SHE can be rational.

(The proof is constructive.)

# Consumption model

#### Market

- There are *n* products with unitary prices *p<sub>j</sub>*.
- Each product is described by the vector of qualities a<sub>j</sub> ∈ R<sup>m</sup>. Thus, a<sub>i</sub><sup>(i)</sup> is the volume of quality i in the unit of product j.

#### Consumer SHE

- Forms and updates the *personal prices*  $y \in R^m$  for qualities.
- Can estimate the personal quality/price ratio for product *j*:  $\pi_j(y) = \frac{1}{p_j} \langle a_j, y \rangle.$
- Has standard  $\sigma_i$  for consumption of quality i,  $\sum_{i=1}^m \sigma_i y_i = 1$ .

Denote  $A = (a_1, \ldots, a_n), \ \sigma = (\sigma_1, \ldots, \sigma_m)^T, \ \pi(y) = \max_{1 \le j \le n} \pi_j(y).$ 

# Consumption algorithm (CA) for kth weekend

For Friday night, SHE has personal prices  $y_k$ , budget  $\lambda_k$ , and cumulative consumption vector of qualities  $s_k \in R^m$ ,  $s_0 = 0$ .

• Define the set  $J_k = \{j : \pi_j(y_k) = \pi(y_k)\}$ , containing the products with the best quality/price ratio.

2 Form partition 
$$x_k \ge 0$$
:  $\sum_{j=1}^n x_k^{(j)} = 1$ , and  $x_k^{(j)} = 0$  for  $j \notin J_k$ .

- **3** Buy all products in volumes  $X_k^{(j)} = \lambda_k \cdot x_k^{(j)} / p_j$ , j = 1, ..., n.
- Consume the bought products:  $s_{k+1} = s_k + AX_k$ .
- Ouring the next week, SHE watches the results and forms the personal prices for the next shopping.
- NB: Only Item 5 is not defined.

# Updating the personal prices for qualities

Define  $\xi_i = \sigma_i y_k^{(i)}$ , the *relative importance* of quality *i*,  $\sum_{i=1}^m \xi_i = 1$ . Denote by  $\hat{s}_k = \frac{1}{k} s_k$  the average consumption.

**Assumption.** 1. During the week, SHE performs regular detections of the most deficient quality by computing  $\psi_k = \min_{1 \le i \le m} \hat{s}_k^{(i)} / \sigma_i$ .

2. This detection is done with random additive errors. Hence, we observe  $E_{\epsilon} \left( \min_{1 \leq i \leq m} \left\{ \frac{\hat{s}_{k}^{(i)}}{\sigma_{i}} + \epsilon_{i} \right\} \right).$ 

Thus, any quality has a chance to be detected as the worst one.

3. We define  $\xi_i$  as the frequency of detecting the quality *i* as the most deficient one with respect to  $\hat{s}_k$ .

This is it. Where is Optimization? Objective Function, etc.?

### Algorithmic aspects

1. If  $\epsilon_i$  are doubly-exponentially i.i.d. with variance  $\mu$ , then  $y_k^{(i)} = \frac{1}{\sigma_i} \exp\left\{-\frac{s_k^{(i)}}{k\sigma_i\mu}\right\} / \sum_{j=1}^m \exp\left\{-\frac{s_k^{(j)}}{k\sigma_j\mu}\right\}$ 

Therefore,  $y_k = \arg \min_{\langle \sigma, y \rangle = 1} \{ \langle s_k, y \rangle + \gamma d(y) \}$ , where  $\gamma = k\mu$ ,  $d(y) = \sum_{i=1}^m \sigma_i y^{(i)} \ln(\sigma_i y^{(i)})$  (prox-function).

**2.** 
$$AX_k = \lambda_k A\left[\frac{x_k}{p}\right] \equiv \lambda_k g_k$$
, where  $g_k \in \partial \pi(y_k)$  (subgradient).

3. Hence,  $s_k$  is an accumulated *model* of function  $\pi(y)$ . Hence, CA is a *primal-dual* method for solving the (dual) problem $\min_{y \ge 0} \left\{ \pi(y) \equiv \max_{1 \le i \le m} \frac{1}{p_i} \langle a_i, y \rangle : \langle \sigma, y \rangle = 1 \right\}.$ 

## Comments

1. The primal problem is

 $\max_{u,\tau} \{ \tau : Au \ge \tau \sigma, u \ge 0, \langle p, u \rangle = 1 \}.$ 

We set  $u_k = [x_k/p]$  and approximate  $u^*$  can by averaging  $\{u_k\}$ .

**2.** No "computation" of subgradients (we just buy). Model is updated implicitly (we just eat).

**3.** CA is an example of *unintentional* optimization. (Other examples in the nature: Fermat principle, etc.)

**4.** SHE does not recognize the objective. However, it exists. SHE is rational by behavior, not by the goal (which is absent?).

**5.** Function  $\pi(y)$  measures the positive appreciation of the market. By minimizing it, we develop a pessimistic vision of the world. (With time, everything becomes expensive.)

**6.** For a better life, allow a bit of irrationality. (Smooth objective, faster convergence.)

# Conclusion

**1.** Optimization patterns are widely presented in the social life. Examples:

- Forming the traditions (Inaugural Lecture)
- Efficient collaboration between industry, science and government (Lecture 1)
- Local actions in problems of unlimited size (Lecture 3).
- **2.** The winning social systems give better possibilities for rational behavior of people. (Forget about ants and bees!)
- **3.** Our role could be the discovering of such patterns and helping to improve them by an appropriate mathematical analysis.

### References

Lecture 1: Intrinsic complexity of Black-Box Optimization

- Yu. Nesterov. *Introductory Lectures on Convex Optimization*. Chapters 2, 3. Kluwer, Boston, 2004.
- Yu. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence  $O(\frac{1}{k^2})$ . Doklady AN SSSR (translated as Soviet Math. Dokl.), 1983, v.269, No. 3, 543-547.

#### Lecture 2: Looking into the Black Box

- Yu. Nesterov. "Smooth minimization of non-smooth functions", *Mathematical Programming* (A), **103** (1), 127-152 (2005).
- Yu. Nesterov. "Excessive gap technique in nonsmooth convex minimization". SIAM J. Optim. **16** (1), 235-249 (2005).
- Yu.Nesterov. Gradient methods for minimizing composite functions. Accepted by *Mathematical Programming*.

۰

### References

Lecture 3: Huge-scale optimization problems

- Yu.Nesterov. Efficiency of coordinate descent methods on large scale optimization problems. Accepted by SIAM.
- Yu.Nesterov. Subgradient methods for huge-scale optimization problems. CORE DP 2012/02.

Lecture 4: Nonlinear analysis of combinatorial problems.

- Yu.Nesterov. Semidefinite Relaxation and Nonconvex Quadratic Optimization. *Optimization Methods and Software*, vol.9, 1998, pp.141–160.
- Yu.Nesterov. Simple bounds for boolean quadratic problems. EUROPT Newsletters, **18**, 19-23 (December 2009).

### References

#### Lecture 5:

- Yu.Nesterov, J.-Ph.Vial. Confidence level solutions for stochastic programming. Auromatica, 44(6), 1559-1568 (2008)
- Yu.Nesterov. Algorithmic justification of intuitive rationality in consumer behavior. CORE DP.

#### THANK YOU FOR YOUR ATTENTION!