Liege University: Francqui Chair 2011-2012

Lecture 4: Nonlinear analysis of combinatorial problems

Yurii Nesterov, CORE/INMA (UCL)

March 16, 2012

Outline

(1) Boolean quadratic problem
(2) Simple bounds
(3) SDP-relaxation and its quality

4 General constraints
(5) Generating functions of integer sets
(6) Knapsack volume
(7) Fast computations
(8) Further extensions

Boolean quadratic problem

Let $Q=Q^{T}$ be an $(n \times n)$-matrix.
Maximization: find $f^{*}(Q) \equiv \max _{x}\left\{\langle Q x, x\rangle: x_{i}= \pm 1, i=1 \ldots n\right\}$.
Minimization: find $f_{*}(Q) \equiv \min _{x}\left\{\langle Q x, x\rangle: x_{i}= \pm 1, i=1 \ldots n\right\}$.
Clearly $f^{*}(-Q)=-f_{*}(Q)$.

Trivial Properties

- Both problems are NP-hard.
- They can have up to 2^{n} local extremums.

Very often we are happy with approximate solutions

Simple bounds: Eigenvalues

Upper bound. For any $x \in R^{n}$ with $x_{i}= \pm 1$, we have $\|x\|^{2}=n$.
Therefore,

$$
f^{*}(Q) \leq \max _{\|x\|^{2}=n}\langle Q x, x\rangle=n \cdot \lambda_{\max }(Q) \text {. }
$$

Lower bounds. 1. If $Q \succeq 0$, then

$$
f^{*}(Q)=\max _{\left|x_{i}\right| \leq 1}\langle Q x, x\rangle \geq \max _{\|x\|^{2}=1}\langle Q x, x\rangle=\lambda_{\max }(Q)
$$

2. Consider random x with $\operatorname{Prob}\left(x_{i}=1\right)=\operatorname{Prob}\left(x_{i}=-1\right)=\frac{1}{2}$. Then

$$
\begin{aligned}
f^{*}(Q) \geq & E_{x}(\langle Q x, x\rangle)=\sum_{i, j=1}^{n} Q_{i, j} E_{x}\left(x_{i} x_{j}\right) \\
& =\sum_{i=1}^{n} Q_{i, i}=\operatorname{Trace}(Q)
\end{aligned}
$$

Example: $Q=e e^{T}$, $\operatorname{Trace}(Q)=\lambda_{\max }(Q)=n$. In both cases, relative quality is n.

Polyhedral bound

For Boolean $x \in R^{n}$, we have

$$
\langle Q x, x\rangle=\sum_{i, j=1}^{n} Q_{i, j} x_{i} x_{j} \leq \sum_{i, j}\left|Q_{i, j}\right| \stackrel{\text { def }}{=}\|Q\|_{1}
$$

How good is it?
Random hyperplane technique. (Krivine 70's, Goemans, Williamson 95)
Let us fix $V \in M_{n}$. Consider the random vector

$$
\xi=\operatorname{sgn}\left[V^{\top} u\right]
$$

with random $u \in R^{n}$, uniformly distributed on unit sphere.
([]] denotes component-wise operations.)
Lemma1: $E\left(\xi_{i} \xi_{j}\right)=\frac{2}{\pi} \arcsin \frac{\left\langle v_{i}, v_{j}\right\rangle}{\left\|v_{i}\right\| \cdot\left\|v_{j}\right\|}$.
Lemma 2: For $X \succeq 0$, we have $\arcsin [X] \succeq X$.
Proof: $\arcsin [X]=X+\frac{1}{6}[X]^{3}+\frac{3}{40}[X]^{5}+\ldots \succeq X$.

Quality of polyhedral bound $(Q \succeq 0)$

Let $Q=V^{T} V$ (this means that $\left.Q_{i, j}=\left\langle v_{i}, v_{j}\right\rangle\right)$. Then

$$
f^{*}(Q) \geq E(\langle Q \xi, \xi\rangle)=\frac{2}{\pi} \sum_{i, j=1}^{n} Q^{(i, j)} \arcsin \left(\frac{Q^{(i, j)}}{\sqrt{Q^{(i, i)} Q^{(i, j)}}}\right) \stackrel{\text { def }}{=} \frac{2}{\pi} \rho .
$$

Denote $D=\operatorname{diag}(Q)^{-1 / 2}$. Then $\rho \geq\langle Q, D Q D\rangle_{M}$.
Denote $S_{1}=\left\langle Q, I_{n}\right\rangle_{M}, S_{2}=\sum_{i \neq j}\left|Q_{i, j}\right|$. Then $S_{1}+S_{2}=\|Q\|_{1}$. Thus,

$$
\begin{gathered}
\langle Q, D Q D\rangle_{M}=S_{1}+\sum_{i \neq j} \frac{\left(Q_{i, j}\right)^{2}}{\sqrt{Q_{i, i} Q_{j, j}}} \geq S_{1}+\frac{S_{2}^{2}}{\sum_{i \neq j} \sqrt{Q_{i, i} Q_{j, j}}} \\
=S_{1}+\frac{S_{2}^{2}}{\left(\sum_{i=1}^{n} \sqrt{Q_{i, i}}\right)^{2}-S_{1}} \geq S_{1}+\frac{S_{2}^{2}}{n S_{1}-S_{1}}=\|Q\|_{1}-S_{2}+\frac{S_{2}^{2}}{(n-1)\left(\|Q\|_{1}-S_{2}\right)} .
\end{gathered}
$$

The minimum is attained for $S_{2}=\|Q\|_{1} \cdot\left(1-\frac{1}{\sqrt{n}}\right)$. Thus,

$$
\|Q\|_{1} \geq f^{*}(Q) \geq\langle Q, D Q D\rangle_{M} \geq \frac{2}{1+\sqrt{n}}\|Q\|_{1}
$$

It is better than the eigenvalue bound!

SDP-bounds: Primal Relaxation (Lovász)

For $X, Y \in M_{n}$, we have

$$
\langle X Y, Z\rangle_{M}=\left\langle X, Z Y^{\top}\right\rangle_{M}=\left\langle Y, X^{\top} Z\right\rangle_{M}
$$

Denote $1_{n}^{k}:\left(1_{n}^{k}\right)_{j}= \pm 1, j=1 \ldots n, k=1 \ldots 2^{n}$.
Then $\left\langle Q 1_{n}^{k}, 1_{n}^{k}\right\rangle=\left\langle Q, 1_{n}^{k}\left(1_{n}^{k}\right)^{T}\right\rangle_{M}$. Therefore

$$
f^{*}(Q)=\max _{X \in \mathcal{P}_{n}}\langle Q, X\rangle_{M}
$$

where $\mathcal{P}_{n} \stackrel{\text { def }}{=} \operatorname{Conv}\left\{1_{n}^{k}\left(1_{n}^{k}\right)^{T}, k=1 \ldots 2^{n}\right\}$. Note that:

- The complete description of \mathcal{P}_{n} is not known.
- For $X \in \mathcal{P}_{n}$ we have: $X \succeq 0$, and $d(X)=1_{n}$. Thus,

$$
f^{*}(Q) \leq \max \left\{\langle Q, X\rangle_{M}: X \succeq 0, d(X)=1_{n}\right\}
$$

Dual Relaxation (Shor)

Problem: $f^{*}(Q)=\max _{x}\left\{\langle Q x, x\rangle: x_{i}^{2}=1, i=1 \ldots n\right\}$. Its Lagrangian is $\mathcal{L}(x, \xi)=\langle Q x, x\rangle+\sum_{i=1}^{n} \xi_{i}\left(1-\left(x_{i}\right)^{2}\right)$. Therefore

$$
\begin{gathered}
f^{*}(Q)=\max _{x} \min _{\xi} \mathcal{L}(x, \xi) \leq \min _{\xi} \max _{x} \mathcal{L}(x, \xi) \\
=\min _{\xi}\left\{\left\langle 1_{n}, \xi\right\rangle: Q \preceq D(\xi)\right\} \stackrel{\text { def }}{=} s^{*}(Q) .
\end{gathered}
$$

Note: Both relaxations give exactly the same upper bound:

$$
\begin{aligned}
s^{*}(Q) & =\min _{\xi} \max _{X \geq 0}\left\{\left\langle 1_{n}, \xi\right\rangle+\langle X, Q-D(\xi)\rangle M\right\} . \\
= & \max _{X \geq 0} \min _{\xi}\left\{\left\langle 1_{n}-D(X), \xi\right\rangle+\langle X, Q\rangle M\right\} . \\
& =\max _{X \geq 0}\left\{\langle X, Q\rangle_{M}: d(X)=1_{n}\right\} .
\end{aligned}
$$

Any hope? (Looks as an attempt to approximate Q by $D(\xi)$.)

Trigonometric form of Quadratic Boolean Problem

We have seen that $f^{*}(Q) \geq \frac{2}{\pi} \arcsin \left[V^{T} V\right]$ with $d\left(V^{T} V\right)=1_{n}$. Let us show that

$$
f^{*}(Q)=\max _{\left\|v_{i}\right\|=1} \frac{2}{\pi}\left\langle Q, \arcsin \left[V^{T} V\right]\right\rangle_{M}
$$

Proof: Choose arbitrary $a,\|a\|=1$. Let x^{*} be the global solution.
Define $v_{i}=a$ if $x_{i}^{*}=1$, and $v_{i}=-a$ otherwise.
Then $V^{T} V=x^{*}\left(x^{*}\right)^{T}$ and $\frac{2}{\pi} \arcsin \left[V^{T} V\right]=x^{*}\left(x^{*}\right)^{T}$. \square
Since $\left\{X=V^{\top} V: d(X)=1_{n}\right\} \equiv\left\{X \succeq 0: d(X)=1_{n}\right\}$, we get

$$
f^{*}(Q)=\max _{X \succeq 0}\left\{\frac{2}{\pi}\langle Q, \arcsin [X]\rangle_{M}: d(X)=1_{n}\right\}
$$

Corollary: $s^{*}(Q) \geq f^{*}(Q) \geq \frac{2}{\pi} s^{*}(Q)$.
Relative accuracy does not depend on dimension!

General constraints on squared variables

Consider two problems:

$$
\phi^{*}=\max \left\{\langle Q x, x\rangle:[x]^{2} \in \mathcal{F}\right\}, \quad \phi_{*}=\min \left\{\langle Q x, x\rangle:[x]^{2} \in \mathcal{F}\right\},
$$

where \mathcal{F} is a bounded closed convex set.
Trigonometric form:

$$
\begin{aligned}
& \phi^{*}=\max \left\{\frac{2}{\pi}\langle D(d) Q D(d), \arcsin [X]\rangle:\right. \\
& \left.\quad X \succeq 0, d(X)=1_{n}, d \geq 0,[d]^{2} \in \mathcal{F}\right\},
\end{aligned}
$$

$\phi_{*}=\min \left\{\frac{2}{\pi}\langle D(d) Q D(d), \arcsin [X]\rangle:\right.$

$$
\left.X \succeq 0, d(X)=1_{n}, d \geq 0,[d]^{2} \in \mathcal{F}\right\}
$$

Relaxations:
Define the support function $\xi(u)=\max \{\langle u, v\rangle: v \in \mathcal{F}\}$, and

$$
\begin{gathered}
\psi^{*}=\min \{\xi(u): \quad D(u) \succeq Q\}, \quad \psi_{*}=\max \{-\xi(u): Q+D(u) \succeq 0\}, \\
\tau^{*}=\xi(d(Q)), \quad \tau_{*}=-\xi(-d(Q)) .
\end{gathered}
$$

Simple relations: $\psi_{*} \leq \phi_{*} \leq \tau_{*} \leq \tau^{*} \leq \phi^{*} \leq \psi^{*}$.

Main result

Denote $\psi(\alpha)=\alpha \psi^{*}+(1-\alpha) \psi_{*}, \quad$ and $\beta^{*}=\frac{\psi^{*}-\tau^{*}}{\psi^{*}-\psi_{*}}, \beta_{*}=\frac{\tau_{*}-\psi_{*}}{\psi^{*}-\psi_{*}}$.
Theorem. 1. Let

$$
\alpha^{*}=\max \left\{\frac{2}{\pi} \omega\left(\beta_{*}\right), 1-\beta^{*}\right\}, \text { and } \alpha_{*}=\min \left\{1-\frac{2}{\pi} \omega\left(\beta^{*}\right), \beta_{*}\right\}
$$

where $\omega(\alpha)=\alpha \arcsin (\alpha)+\sqrt{1-\alpha^{2}} \quad\left(\geq 1+\frac{1}{2} \alpha^{2}\right)$.
Then $\quad \psi_{*} \leq \phi_{*} \leq \psi\left(\alpha_{*}\right) \leq \psi\left(\alpha^{*}\right) \leq \phi^{*} \leq \psi^{*}$.
2. $0 \leq \frac{\phi^{*}-\psi\left(\alpha^{*}\right)}{\phi^{*}-\phi_{*}} \leq \frac{24}{49}$.
3. Define $\bar{\alpha}=\frac{\alpha^{*}\left(2-\alpha_{*}\right)-\alpha_{*}}{1+\alpha^{*}-2 \alpha_{*}}$. Then $\frac{\left|\phi^{*}-\psi(\bar{\alpha})\right|}{\phi^{*}-\phi_{*}} \leq \frac{12}{37}$.

Main limitation: Absence of linear constraints

Example. Let $\beta>0$. Consider the problem

$$
\begin{aligned}
\phi^{*} & =\max _{x}\left\{\langle Q x, x\rangle:[x]^{2}=1_{n},\langle c, x\rangle=\beta\right\}, \\
\phi_{*} & =\min _{x}\left\{\langle Q x, x\rangle:[x]^{2}=1_{n},\langle c, x\rangle=\beta\right\} .
\end{aligned}
$$

Natural relaxation:

$$
\begin{aligned}
\psi^{*} & =\max _{X}\left\{\langle Q, X\rangle: d(X)=1_{n}, X \succeq 0,\langle X c, c\rangle=\beta^{2}\right\} \\
\psi_{*} & =\min _{X}\left\{\langle Q, X\rangle: d(X)=1_{n}, X \succeq 0,\langle X c, c\rangle=\beta^{2}\right\}
\end{aligned}
$$

Denote by v any vector with $[v]^{2}=1_{n}$.
Assumptions: 1. There exists a unique v_{*} such that $\left\langle c, v_{*}\right\rangle=\beta$.
2. There exist v_{-}and v_{+}such that $0<\left\langle c, v_{-}\right\rangle<\beta<\left\langle c, v_{+}\right\rangle$.

Note: in this case $\phi^{*}=\phi_{*}$ (unique feasible solution).

Consider the polytope $\mathcal{P}_{n}=\operatorname{Conv}\left\{V_{i}=v_{i} v_{i}^{T}, i=1, \ldots, 2^{n}\right\}$.
Lemma. Any V_{i} is an extreme point of \mathcal{P}_{n}. Any pair V_{i}, V_{j} is connected by an edge.
Note:

1. In view of our assumption $\exists \tilde{V} \in \mathcal{P}_{n}$:

$$
\tilde{V}=\alpha v_{-} v_{-}^{T}+(1-\alpha) v_{+} v_{+}^{T}, \alpha \in(0,1), \quad\langle\tilde{V} c, c\rangle=\beta^{2}
$$

2. $\mathcal{P}_{n} \subset\left\{X: d(X)=1_{n}, X \succeq 0\right\}$.

Conclusion: We can choose $Q: \psi^{*}>\phi^{*}$.
Since $\psi_{*} \leq \phi_{*}$, the relative accuracy of ψ^{*} is $+\infty$.
Reason of the troubles: We intersect edges of \mathcal{P}_{n}.
This cannot happen if $\beta=0$.

Further developments

- Boolean quadratic optimization with m homogeneous linear equality constraints (accuracy $O(\ln m)$).
- Quadratic maximization with quadratic inequality constraints (accuracy $O(\ln m)$).

Main bottleneck: absence of cheap relaxations.

Generating functions of integer sets

1. Primal generating functions.

For set $S \subset Z^{n}$, define $f(S, x)=\sum_{\alpha \in S} x^{\alpha}$,
where $x^{\alpha}=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$.

- $f\left(S, 1_{n}\right)=\mathcal{N}(S)$, the integer volume of S. Can be used for counting problems.
- Sometimes have short representation.

Example: $S=\{x \in Z: x \geq 0\}$. Then

$$
f(S, x)=\frac{1}{1-x}
$$

2. Dual generating functions

2.1. Characteristic function of the set $X \subset Z^{n}$ is defined as

$$
\psi_{X}(c)=\sum_{x \in X} e^{\langle c, x\rangle}, \text { if } X \neq \emptyset, \quad \text { and } 0 \text { otherwise. }
$$

- For counting problem, we have $\mathcal{N}(X)=\psi_{X}(0)$.
- We can be approximate the optimal value of an optimization problem over X :

$$
\begin{gathered}
\mu \ln \psi_{X}\left(\frac{1}{\mu} c\right) \geq \max _{x}\{\langle c, x\rangle: x \in X(y)\} \\
\geq \mu \ln \psi_{X}\left(\frac{1}{\mu} c\right)-\mu \ln \mathcal{N}(X), \mu>0
\end{gathered}
$$

2.2. Generating function of family $\mathcal{X}=\{X(y), y \in \Delta\} \subset Z^{m}$ is defined as $g_{\mathcal{X}, c}(v)=\sum_{y \in \Delta} \psi_{X(y)}(c) \cdot v^{y}$.
Dual counting function: $f_{\mathcal{X}}(v)=g_{\mathcal{X}, 0}(v)$.
Hope: short representation. NB: Constructed by set parameters.

Example

Let $a \in Z_{+}^{n}$. Consider the Boolean knapsack polytope

$$
B_{a}^{1_{n}}(b)=\left\{x \in\{0,1\}^{n}:\langle a, x\rangle=b\right\} .
$$

Goal: Compute $\mathcal{N}\left(B_{a}^{1_{n}}(b)\right)$ for a given $b \in Z_{+}$. (It is NP-hard.) Consider the function $f(z)=\prod_{i=1}^{n}\left(1+z^{a^{(i)}}\right)$, where $z \in \mathcal{C} \stackrel{\text { def }}{=}\{z \in C:|z|=1\}$.
We will see later, that $\quad f(z) \equiv \sum_{b=0}^{\|a\|_{1}} \mathcal{N}\left(B_{a}^{1_{n}}(b)\right) z^{b}, z \in \mathcal{C}$,
where $\|a\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left|a^{(i)}\right|$.
Thus, we need to compute the coefficient of z^{b} in polynomial $f(z)$. For that, we compute all previous coefficients.
Direct computation: $O\left(n\|a\|_{1}\right) \quad \Rightarrow \quad O\left(\|a\|_{1} \cdot \ln \|a\|_{1} \cdot \ln n\right)$.

Knapsack volumes

Notation: $\quad B_{a}^{u}(b)=\left\{x \in Z^{n}: 0 \leq x \leq u,\langle a, x\rangle=b\right\}$.
Consider the family $\mathcal{B}_{a}^{u}=\left\{B_{a}^{u}(b)\right\}_{b \in Z_{+}}$. Its counting function is

$$
f_{\mathcal{B}_{a}^{u}}(z) \stackrel{\text { def }}{=}=\sum_{b=0}^{\infty} \mathcal{N}\left(B_{a}^{u}(b)\right) \cdot z^{b}, \quad z \in \mathcal{C} .
$$

Since u is finite, this is a polynomial of degree $\langle a, u\rangle$.
Lemma. $\quad f_{\mathcal{B}_{a}^{u}}(z)=\prod_{i=1}^{n}\left(\sum_{k=0}^{u^{(i)}} z^{k a^{(i)}}\right)$.
Proof. For $n=1$ it is evident.
Denote $a_{+}=\left(a, a^{(n+1)}\right)^{T} \in Z_{+}^{n+1}$, and $u_{+}=\left(u, u^{(n+1)}\right)^{T} \in Z_{+}^{n+1}$.
For any $b \in Z_{+}$we have

$$
\mathcal{N}\left(B_{a_{+}}^{u_{+}}(b)\right)=\sum_{k=0}^{u^{(n+1)}} \mathcal{N}\left(B_{u}^{a}\left(b-k \cdot a^{(n+1)}\right)\right)
$$

Hence, in view of the inductive assumption, we have

$$
\begin{aligned}
f_{\mathcal{B}_{a_{+}}^{u_{+}}}(z) & =\sum_{b=0}^{\infty} \mathcal{N}\left(B_{a_{+}}^{u_{+}}(b)\right) \cdot z^{b} \\
& =\sum_{b=0}^{\infty}\left(\sum_{k=0}^{u^{(n+1)}} \mathcal{N}\left(B_{u}^{a}\left(b-k a^{(n+1)}\right)\right)\right) \cdot z^{b} \\
& =\sum_{b=0}^{\infty} \mathcal{N}\left(B_{u}^{a}(b)\right) \sum_{k=0}^{u^{(n+1)}} z^{b+k a^{(n+1)}} \\
& =f_{\mathcal{B}_{a}^{u}}(z) \cdot\left(\sum_{k=0}^{u^{(n+1)}} z^{k a^{(n+1)}}\right) \cdot \square
\end{aligned}
$$

Complexity

Lemma. Let polynomial $f(z)$ be represented as a product of several polynomials: $\quad f(z)=\prod_{i=1}^{n} p_{i}(z), \quad z \in \mathcal{C}$.
Then its coefficients can be computed by FFT in

$$
O(D(f) \ln D(f) \ln n)
$$

arithmetic operations, where $D(f)=\sum_{i=1}^{n} D\left(p_{i}\right)$.
Corollary. All $\langle a, u\rangle$ coefficients of the polynomial $f_{\mathcal{B}_{a}^{u}}(z)$ can be computed by FFT in

$$
O(\langle a, u\rangle \ln \langle a, u\rangle \ln n) \text { a.o. }
$$

Unbounded knapsack

Consider $\quad f_{\mathcal{B}_{a}^{\infty}}(z)=\sum_{b=0}^{\infty} \mathcal{N}\left(B_{a}^{\infty}(b)\right) \cdot z^{b} \equiv \prod_{i=1}^{n} \frac{1}{1-z^{(i)}}$, where $z \in \mathcal{C} \backslash\{1\}$.

Note:

1. The coefficients of the polynomial $g(z)=\prod_{i=1}^{n}\left(1-z^{a^{(i)}}\right)$ can be computed by FFT in $O\left(\|a\|_{1} \ln \|a\|_{1} \ln n\right)$ a.o.
2. After that, the first $b+1$ coefficients of the generating function $f_{\mathcal{B}_{a}^{\infty}}(z)$ can be computed in $O\left(b \min \left\{\ln ^{2} b, \ln ^{2} n\right\}\right)$ a. o.

Generating functions of knapsack polytopes

For characteristic function $\psi_{X}(c)=\sum_{y \in X} e^{\langle c, y\rangle}$ of set X, define its potential function: $\quad \phi_{X}(c)=\ln \psi_{X}(c)$.
Note that $\quad \xi_{X}(c) \stackrel{\text { def }}{=} \max _{y \in X}\langle c, y\rangle \leq \phi_{X}(c) \leq \xi_{X}(c)+\ln \mathcal{N}(X)$.
Hence, $\quad \xi_{X}(c) \leq \mu \phi_{X}(c / \mu) \leq \xi_{X}(c)+\mu \ln \mathcal{N}(X), \quad \mu>0$.
For a family of bounded knapsack polytopes $\mathcal{B}_{a}^{u}=\left\{B_{a}^{u}(b)\right\}_{b \in Z_{+}}$, the generating function looks as follows:

$$
g_{\mathcal{B}^{u}, c}(z)=\sum_{b=0}^{\infty} \psi_{B_{a}^{u}(b)}(c) \cdot z^{b} \equiv \sum_{b=0}^{\infty} \exp \left(\phi_{B_{\vec{a}}^{u}(b)}(c)\right) \cdot z^{b}, \quad z \in \mathcal{C} .
$$

Short representation: $g_{\mathcal{B}_{a}^{u}, c}(z)=\prod_{i=1}^{n}\left(\sum_{k=0}^{u^{(i)}} e^{k c^{(i)}} z^{k a^{(i)}}\right)$.
Unbounded case: $g_{\mathcal{B}_{a}^{\infty}, c}(z)=\left[\prod_{i=1}^{n}\left(1-e^{e^{(i)}} z^{a^{(i)}}\right)\right]^{-1}$.

Solving integer knapsack

Find $\quad f^{*}=\max _{x \in Z_{+}^{n}}\{\langle c, x\rangle:\langle a, x\rangle=b\}=\xi_{B_{a}^{\infty}(b)}(c)$.
Since f^{*} is an integer value, we need accuracy less than one.
Note that $\mathcal{N}\left(B_{a}^{\infty}(b)\right) \leq \prod_{i=1}^{n}\left(1+\frac{b}{a^{(i)}}\right) \leq(1+b)^{n}$.
Thus, if we take $\mu<\frac{1}{n} \ln (1+b)$, then

$$
-1+\mu \phi_{B_{a}^{\infty}(b)}(c / \mu)<f^{*} \leq \mu \phi_{B_{a}^{\infty}(b)}(c / \mu) .
$$

For finding coefficient $\psi_{B_{a}^{\infty}(b)}(c / \mu)=\exp \left\{\phi_{B_{a}^{\infty}(b)}(c / \mu)\right\}$, we need

- Compute coefficients of $f(z)=\prod_{i=1}^{n}\left(1-e^{c^{(i)} / \mu} \cdot z^{z^{(i)}}\right)$.
- Compute first $b+1$ coefficients of the function $g(z)=\frac{1}{f(z)}$.

This can be done in $O\left(\|a\|_{1} \cdot \ln \|a\|_{1} \cdot \ln n+b \cdot \ln ^{2} n\right)$ operations of exact real arithmetics.

Further extensions

Problem: count the number of integer points in the set

$$
X=\left\{x \in Z^{n}: 0 \leq x \leq \beta \cdot 1_{n}, A x=b \in R^{m}\right\}
$$

where $\left|A_{i, j}\right| \leq \alpha$.
Dual counting: $\quad O\left(m n \cdot(1+\alpha \beta \cdot n)^{m}\right)$ a.o.
Full enumeration: $O\left(m n \cdot(1+\beta)^{n}\right)$ a.o.
For fixed m, the first bound is polynomial in n.

