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Boolean quadratic problem

Let Q = QT be an (n × n)-matrix.

Maximization: find f ∗(Q) ≡ max
x
{〈Qx , x〉 : xi = ±1, i = 1 . . . n}.

Minimization: find f∗(Q) ≡ min
x
{〈Qx , x〉 : xi = ±1, i = 1 . . . n}.

Clearly f ∗(−Q) = −f∗(Q).

Trivial Properties

Both problems are NP-hard.

They can have up to 2n local extremums.

Very often we are happy with approximate solutions
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Simple bounds: Eigenvalues

Upper bound. For any x ∈ Rn with xi = ±1, we have ‖x‖2 = n.
Therefore,

f ∗(Q) ≤ max
‖x‖2=n

〈Qx , x〉 = n · λmax(Q).

Lower bounds. 1. If Q � 0, then

f ∗(Q) = max
|xi |≤1

〈Qx , x〉 ≥ max
‖x‖2=1

〈Qx , x〉 = λmax(Q).

2. Consider random x with Prob (xi = 1) = Prob (xi = −1) = 1
2 . Then

f ∗(Q) ≥ Ex(〈Qx , x〉) =
n∑

i ,j=1
Qi ,jEx(xixj)

=
n∑

i=1
Qi ,i = Trace (Q).

Example: Q = eeT , Trace (Q) = λmax(Q) = n. In both cases, relative
quality is n.
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Polyhedral bound

For Boolean x ∈ Rn, we have

〈Qx , x〉 =
n∑

i ,j=1
Qi ,jxixj ≤

∑
i ,j
|Qi ,j |

def
= ‖Q‖1.

How good is it?

Random hyperplane technique. (Krivine 70’s, Goemans, Williamson 95)

Let us fix V ∈ Mn. Consider the random vector
ξ = sgn [V Tu]

with random u ∈ Rn, uniformly distributed on unit sphere.
([ · ] denotes component-wise operations.)

Lemma1: E (ξiξj) = 2
π arcsin

〈vi ,vj 〉
‖vi‖·‖vj‖ .

Lemma 2: For X � 0, we have arcsin[X ] � X .

Proof: arcsin[X ] = X + 1
6 [X ]3 + 3

40 [X ]5 + . . . � X .
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Quality of polyhedral bound (Q � 0)

Let Q = V TV (this means that Qi ,j = 〈vi , vj〉). Then

f ∗(Q) ≥ E (〈Qξ, ξ〉) = 2
π

n∑
i ,j=1

Q(i ,j) arcsin

(
Q(i,j)√

Q(i,i)Q(j,j)

)
def
= 2

πρ.

Denote D = diag (Q)−1/2. Then ρ ≥ 〈Q,DQD〉M .

Denote S1 = 〈Q, In〉M , S2 =
∑
i 6=j

|Qi ,j |. Then S1 + S2 = ‖Q‖1. Thus,

〈Q,DQD〉M = S1 +
∑
i 6=j

(Qi,j )
2

√
Qi,iQj,j

≥ S1 +
S2

2∑
i 6=j

√
Qi,iQj,j

= S1 +
S2

2(
n∑

i=1

√
Qi,i

)2

−S1

≥ S1 +
S2

2
nS1−S1

= ‖Q‖1 − S2 +
S2

2
(n−1)(‖Q‖1−S2) .

The minimum is attained for S2 = ‖Q‖1 · (1− 1√
n

). Thus,

‖Q‖1 ≥ f ∗(Q) ≥ 〈Q,DQD〉M ≥ 2
1+
√
n
‖Q‖1.

It is better than the eigenvalue bound!
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SDP-bounds: Primal Relaxation (Lovász)

For X ,Y ∈ Mn, we have
〈XY ,Z 〉M = 〈X ,ZY T 〉M = 〈Y ,XTZ 〉M .

Denote 1kn : (1kn)j = ±1, j = 1 . . . n, k = 1 . . . 2n.

Then 〈Q1kn , 1
k
n〉 = 〈Q, 1kn(1kn)T 〉M . Therefore

f ∗(Q) = max
X∈Pn

〈Q,X 〉M ,

where Pn
def
= Conv {1kn(1kn)T , k = 1 . . . 2n}. Note that:

The complete description of Pn is not known.

For X ∈ Pn we have: X � 0, and d(X ) = 1n. Thus,

f ∗(Q) ≤ max{〈Q,X 〉M : X � 0, d(X ) = 1n}.
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Dual Relaxation (Shor)

Problem: f ∗(Q) = max
x
{〈Qx , x〉 : x2

i = 1, i = 1 . . . n}.

Its Lagrangian is L(x , ξ) = 〈Qx , x〉+
n∑

i=1
ξi (1− (xi )

2). Therefore

f ∗(Q) = max
x

min
ξ
L(x , ξ) ≤ min

ξ
max
x
L(x , ξ)

= min
ξ
{〈1n, ξ〉 : Q � D(ξ)} def

= s∗(Q).

Note: Both relaxations give exactly the same upper bound:

s∗(Q) = min
ξ

max
X�0
{〈1n, ξ〉+ 〈X ,Q − D(ξ)〉M}.

= max
X�0

min
ξ
{〈1n − D(X ), ξ〉+ 〈X ,Q〉M}.

= max
X�0
{〈X ,Q〉M : d(X ) = 1n}.

Any hope? (Looks as an attempt to approximate Q by D(ξ).)

Yu. Nesterov () Nonlinear analysis of combinatorial problems 8/24March 16, 2012 8 / 24



Trigonometric form of Quadratic Boolean Problem

We have seen that f ∗(Q) ≥ 2
π arcsin[V TV ] with d(V TV ) = 1n. Let us

show that
f ∗(Q) = max

‖vi‖=1

2
π 〈Q, arcsin[V TV ]〉M .

Proof: Choose arbitrary a, ‖a‖ = 1. Let x∗ be the global solution.

Define vi = a if x∗i = 1, and vi = −a otherwise.

Then V TV = x∗(x∗)T and 2
π arcsin[V TV ] = x∗(x∗)T .

Since {X = V TV : d(X ) = 1n} ≡ {X � 0 : d(X ) = 1n}, we get

f ∗(Q) = max
X�0

{
2
π 〈Q, arcsin[X ]〉M : d(X ) = 1n

}
.

Corollary: s∗(Q) ≥ f ∗(Q) ≥ 2
π s
∗(Q).

Relative accuracy does not depend on dimension!
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General constraints on squared variables

Consider two problems:

φ∗ = max{〈Qx , x〉 : [x ]2 ∈ F}, φ∗ = min{〈Qx , x〉 : [x ]2 ∈ F},
where F is a bounded closed convex set.

Trigonometric form:

φ∗ = max{ 2
π 〈D(d)QD(d), arcsin[X ]〉 :

X � 0, d(X ) = 1n, d ≥ 0, [d ]2 ∈ F},
φ∗ = min{ 2

π 〈D(d)QD(d), arcsin[X ]〉 :
X � 0, d(X ) = 1n, d ≥ 0, [d ]2 ∈ F}.

Relaxations:
Define the support function ξ(u) = max{〈u, v〉 : v ∈ F}, and

ψ∗ = min{ξ(u) : D(u) � Q}, ψ∗ = max{−ξ(u) : Q + D(u) � 0},
τ∗ = ξ(d(Q)), τ∗ = −ξ(−d(Q)).

Simple relations: ψ∗ ≤ φ∗ ≤ τ∗ ≤ τ∗ ≤ φ∗ ≤ ψ∗.
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Main result

Denote ψ(α) = αψ∗ + (1− α)ψ∗, and β∗ = ψ∗−τ∗
ψ∗−ψ∗ , β∗ = τ∗−ψ∗

ψ∗−ψ∗ .

Theorem. 1. Let

α∗ = max{ 2
πω(β∗), 1− β∗}, and α∗ = min{1− 2

πω(β∗), β∗},

where ω(α) = α arcsin(α) +
√

1− α2 (≥ 1 + 1
2α

2).

Then ψ∗ ≤ φ∗ ≤ ψ(α∗) ≤ ψ(α∗) ≤ φ∗ ≤ ψ∗.

2. 0 ≤ φ∗−ψ(α∗)
φ∗−φ∗ ≤

24
49 .

3. Define ᾱ = α∗(2−α∗)−α∗
1+α∗−2α∗

. Then |φ
∗−ψ(ᾱ)|
φ∗−φ∗ ≤

12
37 .
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Main limitation: Absence of linear constraints

Example. Let β > 0. Consider the problem

φ∗ = max
x
{〈Qx , x〉 : [x ]2 = 1n, 〈c , x〉 = β},

φ∗ = min
x
{〈Qx , x〉 : [x ]2 = 1n, 〈c , x〉 = β}.

Natural relaxation:

ψ∗ = max
X
{〈Q,X 〉 : d(X ) = 1n, X � 0, 〈Xc, c〉 = β2},

ψ∗ = min
X
{〈Q,X 〉 : d(X ) = 1n, X � 0, 〈Xc , c〉 = β2}.

Denote by v any vector with [v ]2 = 1n.
Assumptions: 1. There exists a unique v∗ such that 〈c , v∗〉 = β.
2. There exist v− and v+ such that 0 < 〈c , v−〉 < β < 〈c , v+〉.
Note: in this case φ∗ = φ∗ (unique feasible solution).
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Consider the polytope Pn = Conv {Vi = viv
T
i , i = 1, . . . , 2n}.

Lemma. Any Vi is an extreme point of Pn. Any pair Vi , Vj is connected
by an edge.

Note:

1. In view of our assumption ∃Ṽ ∈ Pn:

Ṽ = αv−v
T
− + (1− α)v+v

T
+ , α ∈ (0, 1), 〈Ṽ c , c〉 = β2.

2. Pn ⊂ {X : d(X ) = 1n, X � 0}.
Conclusion: We can choose Q: ψ∗ > φ∗.

Since ψ∗ ≤ φ∗, the relative accuracy of ψ∗ is +∞.

Reason of the troubles: We intersect edges of Pn.

This cannot happen if β = 0.
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Further developments

Boolean quadratic optimization with m homogeneous linear equality
constraints (accuracy O(lnm)).

Quadratic maximization with quadratic inequality constraints
(accuracy O(lnm)).

Main bottleneck: absence of cheap relaxations.
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Generating functions of integer sets

1. Primal generating functions.

For set S ⊂ Zn, define f (S , x) =
∑
α∈S

xα,

where xα =
n∏

i=1
xαi
i .

f (S , 1n) = N (S), the integer volume of S . Can be used for counting
problems.

Sometimes have short representation.

Example: S = {x ∈ Z : x ≥ 0}. Then

f (S , x) = 1
1−x .
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2. Dual generating functions

2.1. Characteristic function of the set X ⊂ Zn is defined as

ψX (c) =
∑
x∈X

e〈c,x〉, if X 6= ∅, and 0 otherwise.

For counting problem, we have N (X ) = ψX (0).

We can be approximate the optimal value of an optimization problem
over X :

µ lnψX

(
1
µc
)
≥ max

x
{〈c , x〉 : x ∈ X (y)}

≥ µ lnψX

(
1
µc
)
− µ lnN (X ), µ > 0.

2.2. Generating function of family X = {X (y), y ∈ ∆} ⊂ Zm is

defined as gX ,c(v) =
∑
y∈∆

ψX (y)(c) · v y .

Dual counting function: fX (v) = gX ,0(v).

Hope: short representation. NB: Constructed by set parameters.
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Example

Let a ∈ Zn
+. Consider the Boolean knapsack polytope

B1n
a (b) = {x ∈ {0, 1}n : 〈a, x〉 = b}.

Goal: Compute N (B1n
a (b)) for a given b ∈ Z+. (It is NP-hard.)

Consider the function f (z) =
n∏

i=1

(
1 + za

(i)
)
, where

z ∈ C def
= {z ∈ C : |z | = 1}.

We will see later, that f (z) ≡
‖a‖1∑
b=0

N (B1n
a (b)) zb, z ∈ C,

where ‖a‖1
def
=

n∑
i=1
|a(i)|.

Thus, we need to compute the coefficient of zb in polynomial f (z).
For that, we compute all previous coefficients.
Direct computation: O(n ‖a‖1) ⇒ O(‖a‖1 · ln ‖a‖1 · ln n).
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Knapsack volumes

Notation: Bu
a (b) = {x ∈ Zn : 0 ≤ x ≤ u, 〈a, x〉 = b}.

Consider the family Bua = {Bu
a (b)}b∈Z+ . Its counting function is

fBua (z)
def
= =

∞∑
b=0

N (Bu
a (b)) · zb, z ∈ C.

Since u is finite, this is a polynomial of degree 〈a, u〉.

Lemma. fBua (z) =
n∏

i=1

(
u(i)∑
k=0

zka
(i)

)
.

Proof. For n = 1 it is evident.

Denote a+ = (a, a(n+1))T ∈ Zn+1
+ , and u+ = (u, u(n+1))T ∈ Zn+1

+ .

For any b ∈ Z+ we have

N (Bu+
a+ (b)) =

u(n+1)∑
k=0

N (Ba
u(b − k · a(n+1))).
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Hence, in view of the inductive assumption, we have

fBu+
a+

(z) =
∞∑
b=0

N (Bu+
a+ (b)) · zb

=
∞∑
b=0

(
u(n+1)∑
k=0

N (Ba
u(b − ka(n+1)))

)
· zb

=
∞∑
b=0

N (Ba
u(b))

u(n+1)∑
k=0

zb+ka(n+1)

= fBua (z) ·

(
u(n+1)∑
k=0

zka
(n+1)

)
. �
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Complexity

Lemma. Let polynomial f (z) be represented as a product of several

polynomials: f (z) =
n∏

i=1
pi (z), z ∈ C.

Then its coefficients can be computed by FFT in

O(D(f ) lnD(f ) ln n )

arithmetic operations, where D(f ) =
n∑

i=1
D(pi ).

Corollary. All 〈a, u〉 coefficients of the polynomial fBua (z) can be computed
by FFT in

O(〈a, u〉 ln〈a, u〉 ln n) a.o.
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Unbounded knapsack

Consider fB∞a (z) =
∞∑
b=0

N (B∞a (b)) · zb ≡
n∏

i=1

1

1−za(i) ,

where z ∈ C \ {1}.

Note:

1. The coefficients of the polynomial g(z) =
n∏

i=1
(1− za

(i)
) can be

computed by FFT in O(‖a‖1 ln ‖a‖1 ln n) a.o.

2. After that, the first b + 1 coefficients of the generating function fB∞a (z)
can be computed in O(b min{ln2 b, ln2 n}) a. o.
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Generating functions of knapsack polytopes

For characteristic function ψX (c) =
∑
y∈X

e〈c,y〉 of set X , define its potential

function: φX (c) = lnψX (c).

Note that ξX (c)
def
= max

y∈X
〈c , y〉 ≤ φX (c) ≤ ξX (c) + lnN (X ).

Hence, ξX (c) ≤ µφX (c/µ) ≤ ξX (c) + µ lnN (X ), µ > 0.

For a family of bounded knapsack polytopes Bua = {Bu
a (b)}b∈Z+ , the

generating function looks as follows:

gBua ,c(z) =
∞∑
b=0

ψBu
a (b)(c) · zb ≡

∞∑
b=0

exp(φBu
a (b)(c)) · zb, z ∈ C.

Short representation: gBua ,c(z) =
n∏

i=1

(
u(i)∑
k=0

ekc
(i)
zka

(i)

)
.

Unbounded case: gB∞a ,c(z) =

[
n∏

i=1
(1− ec

(i)
za

(i)
)

]−1

.
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Solving integer knapsack

Find f ∗ = max
x∈Zn

+

{〈c , x〉 : 〈a, x〉 = b} = ξB∞a (b)(c).

Since f ∗ is an integer value, we need accuracy less than one.

Note that N (B∞a (b)) ≤
n∏

i=1

(
1 + b

a(i)

)
≤ (1 + b)n.

Thus, if we take µ < 1
n ln(1 + b), then

−1 + µφB∞a (b)(c/µ) < f ∗ ≤ µφB∞a (b)(c/µ).

For finding coefficient ψB∞a (b)(c/µ) = exp{φB∞a (b)(c/µ)}, we need

Compute coefficients of f (z) =
n∏

i=1
(1− ec

(i)/µ · za(i)
).

Compute first b + 1 coefficients of the function g(z) = 1
f (z) .

This can be done in O(‖a‖1 · ln ‖a‖1 · ln n + b · ln2 n) operations of exact
real arithmetics.
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Further extensions

Problem: count the number of integer points in the set

X = {x ∈ Zn : 0 ≤ x ≤ β · 1n, Ax = b ∈ Rm},
where |Ai ,j | ≤ α.

Dual counting: O (mn · (1 + αβ · n)m) a.o.

Full enumeration: O (mn · (1 + β)n) a.o.

For fixed m, the first bound is polynomial in n.
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