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Boolean quadratic problem

Let Q= QT be an (n x n)-matrix.

Maximization: find f*(Q) = max{(Qx,x) : x; ==£1, i=1...n}.
Minimization: find £,(Q) = min{(Qx,x) : x; ==£1, i=1...n}.
Clearly f*(—Q) = —£(Q).

Trivial Properties
@ Both problems are NP-hard.

@ They can have up to 2" local extremums.

Very often we are happy with approximate solutions
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Simple bounds: Eigenvalues

Upper bound. For any x € R" with x; = +1, we have |x||?> = n.
Therefore,

f*(Q) < max <QX>X> = n'Amax(Q)-

[Ix[[2=n

Lower bounds. 1. If @ > 0, then
Q) = max (@x,x) > max (@Qx,x) = Amax(Q).

Ixil<1 o xlp=t
2. Consider random x with Prob (x; = 1) = Prob (x; = —1) = 2. Then
Q) = E((@x,x) = > QijEx(xix)

ij=1

= zn: Qii = Trace(Q).
i=1

Example: Q@ = ee”, Trace (Q) = Amax(Q) = n. In both cases, relative
quality is n.
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Polyhedral bound

For Boolean x € R", we have
def

(Qx, x) = Z Qi jxixj < Z!Qw! = QI
7.1_
How good is it?

Random hyperplane technique. (Krivine 70's, Goemans, Williamson 95)

Let us fix V € M,. Consider the random vector

¢ =sgn[VTu
with random u € R", uniformly distributed on unit sphere.
([ - ] denotes component—wise operations.)

Lemmal: E({§)) = arcsm W

vill-

Lemma 2: For X = 0, we have arcsin[X] = X.
Proof: arcsin[X] = X + L X+ [X]°+ ... = X.
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Quality of polyhedral bound (@ > 0)

Let Q = VTV (this means that Q;; = (v;,v;)). Then
i -
. _ 2 (id) aresin [ QU | def 2
F(Q) > E({Q€,€)) wg;lQ 7 aresin (W) ml
Denote D = diag (Q)"¥/2. Then p > (Q, DQD)m

Denote S1 = (Q, In)m, So = > |Qij|. Then 51 + S = ”QHI Thus,

i#j
DQD)y = S+ 3.~k > s
(Q. DQD)m 1+,§; \/Q,,Q,J Lt Z\/Q,,QH
52
=51+ 2 >51+,,5 5 ”QH1_52+ﬁ'
(Z m) 1—51 (n=1)([|Qll1—52)

The minimum is attained for S = ||@Q||1 - (1 — 1). Thus,

1Rl > £(Q) > (Q, DQD)wm > :2~1I@Q]1.

It is better than the eigenvalue bound!
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SDP-bounds: Primal Relaxation (Lovasz)

For X, Y € M, we have
(XY, Z)m = <X,ZYT>M = <Y,XTZ>M.

Denote 15 : (1K), =£1, j=1...n, k=1...2".
Then (Q1K, 1K) = (Q,1%(1X)T)ps.  Therefore
*(Q) = )QT‘EE;;i(Q,X)M.
where P, f Convy {1K(1%)T) k=1...2"}. Note that:
@ The complete description of P, is not known.
e For X € P, we have: X =0, and d(X) =1,. Thus,
*(Q) < max{(Q,X)m : X = 0,d(X) = 1,}.
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Dual Relaxation (Shor)

Problem: f*(Q) = max{(Qx,x): x*=1, i=1...n}.

Its Lagrangian is £(x,§) = (Qx, x) + Z &L= (x)3).
Q)= maxmgm L(x, 5) < mgln maxﬁ(x €)

Therefore

= min{(L,.&) - @ < D(¢)} < © 5(Q).

Note: Both relaxations give exactly the same upper bound:
s"(Q) = minmax{(Ln, &) + (X, Q = D())m}-
= maxmin{(1, — D(X),&) + (X, Q)m}.
= Q;é{o(, Q)m: d(X)=1,}.

Any hope? (Looks as an attempt to approximate Q by D(¢).)
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Trigonometric form of Quadratic Boolean Problem

We have seen that f*(Q) > 2 arcsin[V T V] with d(VTV) =1,. Letus

show that
Q)= IITHai(l 2(Q, arcsin[VT V]) .
Proof: Choose arbitrary a, ||a|| = 1. Let x* be the global solution.
Define v; = a if x* = 1, and v; = —a otherwise.
Then VTV = x*(x*)T and 2 arcsin[VT V] = x*(x*)T.
Since {X=VTV:dX)=1,} ={X=0: d(X)=1,}, we get
F(Q) = max {2(Q,arcsin[X])m : d(X) =1,}.

Corollary: s*(Q) > f*(Q) > 25*(Q).

Relative accuracy does not depend on dimension!
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General constraints on squared variables

Consider two problems:
" = max{(Qx,x) : [x]> € F}, ¢« =min{(Qx,x) : [x]> € F},
where F is a bounded closed convex set.
Trigonometric form:
¢* = max{2(D(d)QD(d), arcsin[X]) :
X =0, dX)=1, d>0, [d? e F},
¢+ = min{2(D(d)QD(d), arcsin[X]) :
X =0, dX)=1, d>0, [d? <€ F}.

Relaxations:
Define the support function &(u) = max{{(u,v): v € F}, and

P* =min{{(v) : D(uv) = Q}, ¥ =max{-{(v): Q+ D(u) = 0},
™ =£(d(Q)), T = —£(—d(Q)).
Simple relations: ¢, < ¢, < 7, < 7F < P* < Y*.
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Main result

Denote ¥/() = atp* + (1 — )b, and B* = L==, B, = 7==t=.
Theorem. 1. Let

o = max{%w(ﬁ*), 1—p*}, and o, = min{l — %w(ﬁ*),ﬁ*},
where w(a) = aarcsin(a) + VI—a2 (> 1+ 3a?).
Then 9y < ¢y < Y(au) S P(a”) < 9" <™

o —P(a”) .~ 24
20< 55202 <0

- ~ _ a*(2—as)—ax |[p* —p(a)] 12
3. Define a = al-}—a*——2oc* Then W S 37"
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Main limitation: Absence of linear constraints

Example. Let 5 > 0. Consider the problem
o* = m)?X{<QX,X>  [x]2 =1,, {c,x) = B},
b0 = min{{Qx.x) + [x2 =1, (c.x) = B},
Natural relaxation:
P = m;x{(Q,X) : d(X) =1, X =0,(Xc,c)=p%},
Yo =min{(Q,X) : d(X) =1 X = 0,(Xe,c) = B}

Denote by v any vector with [v]? = 1,,.
Assumptions: 1. There exists a unique v, such that (c,v.) = (.
2. There exist v_ and vy such that 0 < (c,v_) < 8 < (c, vy).

Note: in this case ¢* = ¢, (unique feasible solution).
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Consider the polytope P, = Conv{V; = v;v., i=1,...,2"}.

Lemma. Any V; is an extreme point of P,. Any pair V;, V; is connected

by an edge.
Note:

1. In view of our assumption 3V € P,:
V=avv! +(1-a)vv], a€(0,1), (Ve,c)=p2
2. PpC{X: d(X)=1, X = 0}.
Conclusion: We can choose Q: ¢* > ¢*.
Since ¥, < ¢, the relative accuracy of ¥* is +o0.

Reason of the troubles: We intersect edges of P,,.

This cannot happen if 3 = 0.
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Further developments

@ Boolean quadratic optimization with m homogeneous linear equality
constraints (accuracy O(In m)).

@ Quadratic maximization with quadratic inequality constraints
(accuracy O(In m)).

Main bottleneck: absence of cheap relaxations.

Yu. Nesterov () Nonlinear analysis of combinatorial problems March 16, 2012 14 / 24



Generating functions of integer sets

1. Primal generating functions.

For set S C Z", define f(S,x) = > x%,
a€eS

n
where x* = ] x"'.
i=1

e f(S,1,) = N(S), the integer volume of S. Can be used for counting
problems.

@ Sometimes have short representation.
Example: S={xe€ Z: x>0}. Then
(S, x) = 1.
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2. Dual generating functions

2.1. Characteristic function of the set X C Z" is defined as

Yx(c) = 3 el if X #£0, and 0 otherwise.
xeX

@ For counting problem, we have N'(X) = vx(0).

@ We can be approximate the optimal value of an optimization problem
over X:

winx (ic) > max{(c,x): x € X(y)}
> 1ln by (%c) —uInN(X), > 0.
2.2. Generating function of family X = {X(y), y e A} C Z™ is
defined as gy c(v) = > wx(y)(c) - v
yYeEA
Dual counting function: fx(v) = gxo(v).

Hope: short representation. NB: Constructed by set parameters.

Yu. Nesterov () Nonlinear analysis of combinatorial problems March 16, 2012 16 / 24



Example

Let a € Z!. Consider the Boolean knapsack polytope
Blr(b) = {x € {0,1}": (a,x) = b}.
Goal: Compute N (BX"(b)) for a given b€ Z,.. (It is NP-hard.)

n .

Consider the function  f(z) = [] (1 + z"(')) ,  where
i=1

zECdéf{zeC: |z| = 1}.
I

We will see later, that  f(z) = > N(Bi*(b))z?, z€C,
b=0
n .
where [|af; % 3™ 1a0)].
i=1

Thus, we need to compute the coefficient of z” in polynomial f(z).
For that, we compute all previous coefficients.
Direct computation:  O(nllalli) = O(Jlall1 - In]alj1 - Inn).

Yu. Nesterov () Nonlinear analysis of combinatorial problems March 16, 2012

17/ 24



Knapsack volumes

Notation: BY(b)={x€ Z": 0<x < u, (a,x) = b}.

Consider the family By = {BY(b)}becz,. Its counting function is

fiss(2) = §0N(Bg(b)) 25, zec

Since u is finite, this is a polynomial of degree (a, u).
n [ ul) .
Lemma. fuu(z) =] [ 2 24" |.
i=1 \ k=0
Proof. For n =1 it is evident.
Denote ay = (a,a"™) T € Z*! and uy = (u, u™)T € Z7HL,

For any b € Z; we have
y(n+1)

N(Ba; (b)) = P N(Bj(b— k- al"tD)).
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Hence, in view of the inductive assumption, we have

fe(2) = 3 N(BLI(B) 2

b=0
o y(n+1)
= bz_jo kg_jo (Ba(b — kal"t1))) | - zb
e ulrtl) (n+1)
= Y N(Bi(b)) ¥ zte
b=0 k=0
y(n+1) (mt1)
= fp(z)- | X 2 . O
k=0
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Complexity

Lemma. Let polynomial f(z) be represented as a product of several
n

polynomials:  f(z) = [] pi(z), z€C.
i=1

Then its coefficients can be computed by FFT in
O(D(f) InD(f) Inn)

n
arithmetic operations, where D(f) = >_ D(p;).
i=1

Corollary. All (a, u) coefficients of the polynomial f:(z) can be computed
by FFT in

O({(a,u) In{a,u) Inn) a.o.

Yu. Nesterov () Nonlinear analysis of combinatorial problems March 16, 2012 20 / 24



Unbounded knapsack

Consider  fiz(2) = 3 N(BX(b)) - 2° =
b=0
where z € C\ {1}.

Note:
n .

1. The coefficients of the polynomial g(z) = [](1 — za(')) can be
i=1

computed by FFT in O(]|al|1 In]|al|1 Inn) a.o.

2. After that, the first b+ 1 coefficients of the generating function f=(z)
can be computed in O(b min{In? b,In>n}) a. o.
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Generating functions of knapsack polytopes

For characteristic function 1x(c) = 3. e{¢¥) of set X, define its potential
yeX
function:  ¢x(c) =Inyx(c).
Note that  &x(c) % ma)><<<c,y) < éx(c) <€x(c) +InN(X).
e

Hence, ¢{x(c) < pox(c/n) <&x(€) +pInN(X), >0

For a family of bounded knapsack polytopes B = {BY(b)}bcz,. the
generating function looks as follows:

[o¢] o0
gnu.c(z) = b;o Ygu(p)(c) - 22 = I;O exp(¢pu(p)(c)) - 2%, zeC.

ul) . .
Short representation: gy (z) = [] <Z ekc()zka()>_
i=1 \ k=0

Unbounded case: gpx ((z) = [H

(1— e z“’(i))]
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Solving integer knapsack

Find f*= )r(r&ag{(c,x) : (a,x) = b} = &poop)(©).
Since f* is an integer value, we need accuracy less than one.
Note that N (B5°(b)) < ]£[ (1 + a?i)) <(1+b)".
Thus, if we take p < 1 Inl(zll—i— b), then
-1 +ﬂ¢Bg°(b)(C/H) <fr< M¢B§°(b)(c/ﬂ)-
For finding coefficient ¢ gec(py(c/1) = exp{dpoo(r)(c/1)}, we need

e Compute coefficients of f(z) = [[(1 — e</n. za(i)).
i=1

e Compute first b+ 1 coefficients of the function g(z) = %

This can be done in O(||al|; - In]al|1 - Inn 4+ b-In?n) operations of exact
real arithmetics.
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Further extensions

Problem: count the number of integer points in the set
X={xeZ":0<x<p-1,, Ax=be R™},

where |A; j| < a.

Dual counting: O (mn-(1+af-n)™) a.o.

Full enumeration: O (mn-(1+ )") a.o.

For fixed m, the first bound is polynomial in n.
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