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Outline

@ Basic NP-hard problem

© NP-hardness of some popular problems

© Lower complexity bounds for Global Minimization

@ Nonsmooth Convex Minimization. Subgradient scheme.
© Smooth Convex Minimization. Lower complexity bounds

@ Methods for Smooth Minimization with Simple Constraints
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Standard Complexity Classes

Let data be coded in matrix A, and n be dimension of the problem.
Combinatorial Optimization
@ NP-hard problems: 2" operations. Solvable in O(p(n)||A]|).
e Fully polynomial approximation schemes: O <% In“ ||A||)

@ Polynomial-time problems: O(p(n)In® | Al|).

Continuous Optimization

@ Sublinear complexity: O (%HAHﬁ) a, 3> 0.

@ Polynomial-time complexity: O (p(n)ln(%||A||))
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Basic NP-hard problem: Problem of stones

Given n stones of integer weights a3, ..., a,, decide if it is possible to
divide them on two parts of equal weight.

Mathematical formulation

Find a Boolean solution x; = +1, i =1,...,n, to a single linear equation
n

Z aiXj = 0.

i=1

n
Another variant: > a;x; = a;.
i=2
n

NB: Solvable in O (In n->y, \a,-]) by FFT transform.
i=1
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Immediate consequence: quartic polynomial

Theorem: Minimization of quartic polynomial of n variables is
NP-hard.

Proof: Consider the following function:

n

f(x) = Enlxﬁ -1 (2 x,?)2 + (é a;x;)4 + (1 —x)%

i=1

The first part is (A[x]?, [x]?), where A= I — Le,eT = 0 with Ae, =0, and
[X]?2=x2i=1,...,n

Thus, f(x) =0iffall x; =7, > a;x; =0, and x; = 1. O]
i=1

v

Corollary: Minimization of convex quartic polynomial over the unit sphere
is NP-hard.
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Nonlinear Optimal Control: NP-hard

Problem: muin{ f(x(1)): X' =g(x,u), 0<t<1, x(0)=xp }.

Consider g(x, u) = 1x - (x,u) — u.
Lemma. Let x|/ = n. Then ||x(t)[|?=n,0<t <1
Proof. Consider g(x, u) = <||X||2 — ) u and let x' = g(x, u). Then

(X', x) = <<|’|‘§”2—I) u,xy = 0.

Thus, ||x(t)]|? = ||x0||?. Same is true for x(t) defined by g. O
Note: We have enough degrees of freedom to put x(1) at any position of
the sphere.

Hence, our problem is:  min{f(y): |ly||*> = n}.

Yu. Nesterov () Complexity of Black-Box Optimization February 24, 2012 6 /26



Descent direction of nonsmooth nonconvex function

i — (11 1= mi )
Consider ¢(x) = (1 7) max | ;] min_ Ixi| + 1(a, x)|,

n
where a € Z and v def > a;i > 1. Clearly, (0) =0.

i=1
Lemma. It is NP-hard to decide if ¢(x) < 0 for some x € R".
Proof: 1. Assume that o € R” with o; = %1 satisfies (a,0) = 0. Then

¢(0) = —3 <0.

2. Assume ¢(x) < 0 and max |x;| = 1. Denote § = |(a, x)|.
1<i<n

Then |x;| > 1—%—1—5, i=1,...,n

Denoting o; = signx;, we have g;x; > 1 — % + 0. Therefore,

loi — xi| =1 —0ix; < % — 0, and we conclude that

(a,0)] < [a,x)|+ a0 —x)| < J+7 max [oj — X

1<i<n
< (1—-7v)+1 < 1.
Since a € Z" , this is possible iff (a,0) = 0.
February 24, 2012
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Black-box optimization

Oracle: Special unit for computing function value and derivatives at test
points. (0-1-2 order.)

Analytic complexity: Number of calls of oracle, which is necessary
(sufficient) for solving any problem from the class.

(Lower/Upper complexity bounds.)
Solution: e-approximation of the minimum.

Resisting oracle: creates the worst problem instance for a particular
method.

@ Starts from “empty” problem.
@ Answers must be compatible with the description of the problem class.
@ The bad problem is created after the method stops.
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Bounds for Global Minimization

Problem: f* = min{f(x):x € Bp}, By={x € R":0<x < ep}.
Problem Class: |f(x) — f(y)| < L||x — y||co ¥X,y € By.

Oracle: f(x) (zero order).

Goal: Find x € B,: f(x) —f* <e.
Theorem: N(e) > (£)".
Proof. Divide B, on p” I,-balls of radius 2i
Resisting oracle: at each test point reply f(x) = 0.
Assume, N < p". Then, 3 ball with no questions. Hence, we can take
f* = —ﬁ. Hence, € > 2—’;). OJ

v

Corollary: Uniform Grid method is worst-case optimal.
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Nonsmooth Convex Minimization (NCM)

Problem: f* = min{f(x) : x € Q}, where
@ QC R"isaconvexset: x,y € Q= [x,y] € Q. Itissimple.
@ f(x) is a sub-differentiable convex function:
fly) = fx)+{f(x).y=x) xyeQ,
for certain subgradient f'(x) € R".

Oracle: f(x), f'(x) (first order).
Solution: e-approximation in function value.
Main inequality: (f'(x),x — x*) > f(x) — f* >0, ¥x € Q.

NB: Anti-subgradient decreases the distance to the optimum.
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NCM: Lower Complexity Bounds

Let Q@ = {||x|| < 2R} and x**1 € x0 + Lin{f'(x0),..., f'(x*)}.

Consider the function f,,(x) = L1r<n.a<xmx,- + BlIx[|? with = W.
From the problem: m|n (LT + E77%), we get
L R L2
T« = "um = T mi/2 fn = T 2pm m1/2’ [[x* H2 = mT = R%.

NB: If x? = 0, then after k iterations we can keep x; = 0 for i > k.

Lipschitz continuity: fi1(x¥) — 7, > —f7, = (k+L:Sl/2'
. 2
Strong convexity: fi1(x*) — fea > —fi = ﬁ

Both lower bounds are exact!
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Subgradient Method

Problem: rréig{f(x) : g(x) <0},

where @ is a closed convex set, and convex f, g € COO(Q).

&(x") k+1 _ k_ _&(x¥ ok
Method If e GO > h then a) x =mQ ( I (Xk)HQg( ))

k+1 _ /
else b) x4+ = mg (< — iy (x4)).
Denote fy = og}(iQN{f(xk) : keb)}. Let N=N,+ Np.

Theorem: If N > L[|x° — x*||2, then i — f* < hL. (h=%.)

Proof: Denote r, = ||x* — x*||.

2 Xk % 2( k
a): e 1} S el (8 ()K= x) B < 1
2h{f"(x"%),x*—x *
b): r,fﬂ—r,fg—W—i—hz 2—Lh(f(xk)—f ) + h2.
Thus, Np2E (i — %) < 12 + B3(Np — N,) = r& + h*(2N,, — N). O
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Smooth Convex Minimization (SCM)

Lipschitz-continuous gradient: ||f'(x) — f'(y)|| < L||x — y||.

Geometric interpretation: for all x,y € dom F we have
fF(y) = £(x) = (F'(x),y —x)
1
x) = f(x),y = x)dt < 5|x - y|*

= (G-
0

Sufficient condition: 0 < f”(x) < L- I,, x € dom .
Equivalent definition:

F(y) > F(0) + (F(x),y — %) + EIIF () — F ()12
Hint: Prove first that f(x) — f* > L[|f/(x)||2.

0

IN
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SCM: Lower complexity bounds
Consider the family of functions (k < n):

fk( ): 2 X1 + Z(XI _Xl+1) +X£:| — X1 = 1<AkX,X> — X1.

=1
Let R} = {x € R" xi=0,i > k} Then fii p(x) = fi(x), x € R].

Clearly, 0 < (Axh, h) < h? + Z 2(h? + h2,1) + h < 4 A2,

2 -1 0
-1 2 -1 0
0 -1 2 k lines
Ak = 0 1 2 -1 ’
0o -1 2
On—k,k On—k,n—k
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Hence, Axx = e; has the solution XX = k+1 > 1 sish
i 0, i> k.
Thus £} = %(Ak‘k XKy — (ey, _k> = —%(el, XKy = —ﬁ, and
k 2

k+1—i k(2k+1
| % ||°= ;( ;r+1 ) k+1)2 Z’ = (k+1))
Let xX° =0 and p < n is fixed.
Lemma. If xk € £, & Lin{£)(x?),..., f)(x*"1)}, then L\ C RY.

Proof: x° =0 Rf,f)(0) = —e; € R{ = x' € R, f}(x1) € R},

Corollary 1: fp(xk) = fi(x¥) > fr.

Corollary 2: Take p=2k+ 1. Then
fo(x¥)— £

K
LO—[f = [_Z(k—f—l) + 302k72) 3(k+1)

2k+1 }/[(2k+1)(4k+3)} -

4(2k+1§(4k+3) -

2k 1\2 2k+3)(k+2
P (k1) = CEEBEE2) o Lyizp)2,

24(k+1
i=k+1 ( )
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Some remarks

1. The rate of convergence of any Black-Box gradient methods as applied
to f € C1! cannon be high than O(%).

2. We cannot guarantee any rate of convergence in the argument.
3. Let A=LLT and f(x) = 1(Ax,x) — (b,x). Then
f(x) — f* = 3||LTx — d||?, where d = LT x*.

Thus, the residual of the linear system L7 x = b cannot be decreased
faster than with the rate O(%)
(provided that we are allowed to multiply by L and L)

4. Optimization problems with nontrivial linear equality constraints cannot
be solved faster than with the rate O(%).
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Methods for Smooth Minimization with Simple Constraints

Consider the problem: min{f(x): x € Q},

where convex f € C,}’I(Q), and Q is a simple closed convex set (allows
projections).

Gradient mapping: for M > 0 define
Ti(x) = argminlf (x) + (F(x),y = x) + Blx = yl?.
If M > L, then
F(Tm(x)) < F(x) + (' (x), Tm(x) = x) + FlIx = Tu(x)I].
Reduced gradient: gy (x) = M- (x — Ty(x)).
Since (f'(x) + M(Tp(x) — x),y — Tm(x)) >0 forall y € Q,
F(x) = F(Tm(x) = Fllx = Tm(I? = z7llemG)I% (= 0)
Fly) = £(x) + (F'(x), Tm(x) = x) + (f'(x), ¥y = Tm(x)
> f(Tm(x)) = ziallem(x)I? + (gm(x), y = Tm(x)).
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Primal Gradient Method (PGM)

Main scheme: x°c Q, xKt1 =T, (xX), k>0.
k+1 _ TQ (Xk _ %f’(xk)).
Rate of convergence. f(xk) — F(xKH1) > L |lgu (x93
F(TL(x)) — £~ s lleL ()17 + (gu(x), Tu(x) — x*)
s (lgL()|l + LR)? — 5R2.
Hence, [lgL(x)]| > [2L(F(TL(x)) — F*) + L2R2] Y2 _ IR

- 2L(F(Ti(x))—f*) o
RL(F(TL())— f*)+L2R2]1/2+LR > & (f(Te(x)) — 7).

Primal interpretation: x

ININA

Thus, f(x*) — f(xkt1) > < (f(ka) £)2.
Similar situation:  /(t) = —a%(t) = a(t) ~ 1.

Conclusion: PGM converges as O(%). This is far from the lower
complexity bounds.
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Dual Gradient Method (DGM)
Model: Let \K>0,i=0,... k and S, & z Ak Then

skf(y>>£Ak<y)dﬁfzv[f<x)+<f'< ) —xh], yeQ.

i=0
Our method: x**! = arg m|n {¢k( ) o Ly(y) + %Hy - XO||2}.
Let us choose )\k = 1 and M = L. We prove by induction
(): R z f(y) < i € minun(y)- (< (k+1)F + 5R)
1. k=0. Then y° = T;(x°).
2. Assume (%) is true for some k > 0. Then

Vicer = min [Uly) + F(<) + (F1(4).y = x4
> min [1+ &lly = <[P 4+ () + (F(),y = x4)].

K
We can take y**1 = T;(x). Thus, %4_1 '—Zo fly') <f*+ 2(k+1)
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Some remarks

1. Dual gradient method works with the model of the objective function.

2. The minimizing sequence {y*} is not necessary for the algorithmic
scheme. We can generate it if necessary.

3. Both primal and dual method have the same rate of convergence O(%)
It is not optimal.

May be we can combine them in order to get a better rate?
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Comparing PGM and DGM

Primal Gradient method

@ Monotonically improves the current state using the local model of the
objective.

o Interpretation: Practitioners, industry.

Dual Gradient Method
@ The main goal is to construct a model of the objective.

@ It is updated by a new experience collected around the predicted test
points (x).

@ Practical verification of the advices (yy) is not essential for the
procedure.

o Interpretation: Science.

Hint: Combination of theory and practice should give better results
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Estimating sequences

Def. A sequences {¢x(x)}32o and {Ac}722. Ak > 0 are called the
estimating sequences if Ay — 0 and Vx € Q, k > 0,

(4 0k(x) < (1= M)F(X) + Agro(x).
Lemma: If (xx) : f(x¥) < ¢} = )r(nelg ¢k(x), then
F(xk) — F* < Ae[po(x*) — £*] — 0.
Proof. f(x¥) < ¢} = )r(ne|8 dr(x) < )r(nelg[(l — M) (x) + Aepo(x)]
< (1= X)) (X*) + Aepo(x*). O
Rate of Ay — 0 defines the rate of f(xX) — f*.

Questions
@ How to construct the estimating sequences?

@ How we can ensure (**)?
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Updating estimating sequences

Let ¢o(x) = 5|Ix — x°[1%, Xo =1, {y¥}32, is a sequence in Q, and

()2t ax € (0,1), ﬁoakzm. Then {6x()} 20, {20!

Akt = (1 = an) Ak,
Prer1(x) = (1= au)duc(x) + ol F(y*) + (F(y*), x = y¥)]
are estimating sequences.

Proof: ¢o(x) < (1 — Xo)f(x) + Aodo(x) = ¢o(x).
If (*) holds for some k > 0, then

dr+1(x) < (1 — ak)Pi(x) + arf(x)

(1= (1= ar)M)f(x) + (1 = aw)(d(x) — (1 = Ae)f(x))
(1= (1 = ak) M) f(x) + (1 — ak)Akgo(x)

(1= Meg1)f(X) + Meqrddo(x). O

Al
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Updating the points

Denote ¢} = )r(neig bk(x), vk = arg)r(neig dk(x). Suppose ¢f > f(x¥).
Bieyr = min {(1 — a)d(x) + aulF(y*) + (F(y*). x =y}
@nkl—auw* + 24 o= i 2]+ aulF (9 + (£ 7).y = 91
> min{f(y*) + G2 x — vl

H(F (1K), anlx = %) + (1= ar) (XK = )}

(1- ak)xk + apvk = xk + ak(vk — xk))
= mingF(y*) + C=E x — vy 2 + s (F(yH),x = v}
X€E

def
(Yk =

) o @)
= min A+ By - 2 () y - 9} 2 O

y:Xk+C¥k(X*Xk)
x€EQ

Answer: a7 = (1 — ap) k. xki1 = To(yx)-
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Optimal method

Choose V% = x% € Q, Ao = 1, ¢o(x) = 5||x — x°||2.
For kK > 0 iterate:
o Compute oy : a% = (1 — ak) Ak = Myt
o Define yi = (1 — ay)x¥ + axvk.
o Compute xk1 = T, (y¥).
o drr1(x) = (1 — ar)gk(x) + arlf(y*) + (F(y*), x — y¥)].

-1/2
Convergence: Denote ax = A, /2. Then
172 \1/2
A1 — Ak = )‘k/ _Akﬁrl _ Ak—Ak41 Me—Mkr1 a1
- 1/2\1/2 — \1/2,1/2 1/2 1/2 - 1/2 — 1/2 — 2
>‘I</ >‘k11 >‘k/ k{}—l(A / +)‘k{¢—1) 2>‘k)‘k{¢—1 2>‘k{|—1
Thus, a > 1+ g Hence, A\ < m.
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Interpretation

1. ¢k(x) accumulates all previously computed information about the
objective. This is a current model of our problem.
2. vk =arg mig ok(x) is a prediction of the optimal strategy.

xe

3. ¢9p = ék(v¥) is an estimate of the optimal value.

4. Acceleration condition: f(x*) < ¢f. We need a firm, which is at
least as good as the best theoretical prediction.

5. Then we create a startup y* = (1 — ay)x* + axv¥, and allow it to work
one year.

6. Theorem: Next year, its performance will be at least as good as the
new theoretical prediction. And we can continue!

Acceleration result: 10 years instead 100.

Who is in a right position to arrange 57 Government, political
institutions.

Yu. Nesterov () Complexity of Black-Box Optimization February 24, 2012 26 / 26



	Basic NP-hard problem
	NP-hardness of some popular problems
	Lower complexity bounds for Global Minimization
	Nonsmooth Convex Minimization. Subgradient scheme.
	Smooth Convex Minimization. Lower complexity bounds
	Methods for Smooth Minimization with Simple Constraints

