Liege University: Francqui Chair 2011-2012

Lecture 1: Intrinsic complexity of Black-Box Optimization

Yurii Nesterov, CORE/INMA (UCL)

February 24, 2012

Outline

Basic NP-hard problem

- 2 NP-hardness of some popular problems
- 3 Lower complexity bounds for Global Minimization
- 4 Nonsmooth Convex Minimization. Subgradient scheme.
- 5 Smooth Convex Minimization. Lower complexity bounds

6 Methods for Smooth Minimization with Simple Constraints

Standard Complexity Classes

Let data be coded in matrix A, and n be dimension of the problem.

Combinatorial Optimization

- NP-hard problems: 2^n operations. Solvable in O(p(n)||A||).
- Fully polynomial approximation schemes: $O\left(\frac{p(n)}{\epsilon^{k}}\ln^{\alpha}\|A\|\right)$.
- Polynomial-time problems: $O(p(n) \ln^{\alpha} ||A||)$.

Continuous Optimization

• Sublinear complexity: $O\left(\frac{p(n)}{\epsilon^{\alpha}}||A||^{\beta}\right)$, $\alpha, \beta > 0$.

• Polynomial-time complexity: $O(p(n) \ln(\frac{1}{\epsilon} ||A||))$.

Basic NP-hard problem: Problem of stones

Given *n* stones of integer weights a_1, \ldots, a_n , decide if it is possible to divide them on two parts of equal weight.

Mathematical formulation

Find a Boolean solution $x_i = \pm 1$, i = 1, ..., n, to a single linear equation $\sum_{i=1}^{n} a_i x_i = 0.$

Another variant: $\sum_{i=2}^{n} a_i x_i = a_1$. **NB:** Solvable in $O\left(\ln n \cdot \sum_{i=1}^{n} |a_i|\right)$ by FFT transform. Immediate consequence: quartic polynomial

Theorem: Minimization of quartic polynomial of n variables is NP-hard.

Proof: Consider the following function:

$$f(x) = \sum_{i=1}^{n} x_i^4 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i^2 \right)^2 + \left(\sum_{i=1}^{n} a_i x_i \right)^4 + (1-x_1)^4.$$

The first part is $\langle A[x]^2, [x]^2 \rangle$, where $A = I - \frac{1}{n}e_n e_n^T \succeq 0$ with $Ae_n = 0$, and $[x]_i^2 = x_i^2$, i = 1, ..., n.

Thus,
$$f(x) = 0$$
 iff all $x_i = \tau$, $\sum_{i=1}^{n} a_i x_i = 0$, and $x_1 = 1$.

Corollary: Minimization of convex quartic polynomial over the unit sphere is NP-hard.

Nonlinear Optimal Control: NP-hard

Problem:
$$\min_{u} \{ f(x(1)) : x' = g(x, u), 0 \le t \le 1, x(0) = x_0 \}.$$

Consider $g(x, u) = \frac{1}{n} x \cdot \langle x, u \rangle - u.$
Lemma. Let $||x_0||^2 = n$. Then $||x(t)||^2 = n, 0 \le t \le 1.$
Proof. Consider $\tilde{g}(x, u) = \left(\frac{xx^T}{||x||^2} - I\right) u$ and let $x' = \tilde{g}(x, u)$. Then

$$\langle x',x\rangle = \langle \left(\frac{xx^T}{\|x\|^2}-I\right)u,x\rangle = 0.$$

Thus, $||x(t)||^2 = ||x_0||^2$. Same is true for x(t) defined by g. **Note:** We have enough degrees of freedom to put x(1) at any position of the sphere.

Hence, our problem is: $\min\{f(y) : \|y\|^2 = n\}.$

Descent direction of nonsmooth nonconvex function Consider $\phi(x) = \left(1 - \frac{1}{\gamma}\right) \max_{1 \le i \le n} |x_i| - \min_{1 \le i \le n} |x_i| + |\langle a, x \rangle|,$ where $a \in Z_{+}^{n}$ and $\gamma \stackrel{\text{def}}{=} \sum_{i=1}^{n} a_{i} \geq 1$. Clearly, $\phi(0) = 0$. **Lemma.** It is NP-hard to decide if $\phi(x) < 0$ for some $x \in \mathbb{R}^n$. **Proof:** 1. Assume that $\sigma \in \mathbb{R}^n$ with $\sigma_i = \pm 1$ satisfies $\langle a, \sigma \rangle = 0$. Then $\phi(\sigma) = -\frac{1}{2} < 0.$ 2. Assume $\phi(x) < 0$ and $\max_{1 \le i \le n} |x_i| = 1$. Denote $\delta = |\langle a, x \rangle|$. Then $|x_i| > 1 - \frac{1}{2} + \delta$, i = 1, ..., n. Denoting $\sigma_i = \operatorname{sign} x_i$, we have $\sigma_i x_i > 1 - \frac{1}{\gamma} + \delta$. Therefore, $|\sigma_i - x_i| = 1 - \sigma_i x_i < \frac{1}{\alpha} - \delta$, and we conclude that $|\langle a, \sigma \rangle| \leq |\langle a, x \rangle| + |\langle a, \sigma - x \rangle| \leq \delta + \gamma \max_{1 \leq i \leq n} |\sigma_i - x_i|$ $< (1-\gamma)\delta + 1 < 1.$

Since $a \in Z^n$, this is possible iff $\langle a, \sigma \rangle = 0$.

Black-box optimization

Oracle: Special unit for computing function value and derivatives at test points. (0-1-2 order.)

Analytic complexity: Number of calls of oracle, which is necessary (sufficient) for solving any problem from the class.

(Lower/Upper complexity bounds.)

Solution: ϵ -approximation of the minimum.

Resisting oracle: creates the worst problem instance for a particular method.

- Starts from "empty" problem.
- Answers must be compatible with the description of the problem class.
- The bad problem is created after the method stops.

Bounds for Global Minimization

Problem:
$$f^* = \min_{x} \{f(x) : x \in B_n\}, B_n = \{x \in R^n : 0 \le x \le e_n\}.$$

Problem Class: $|f(x) - f(y)| \le L ||x - y||_{\infty} \forall x, y \in B_n.$
Oracle: $f(x)$ (zero order).
Goal: Find $\bar{x} \in B_n$: $f(\bar{x}) - f^* \le \epsilon.$
Theorem: $N(\epsilon) \ge \left(\frac{L}{2\epsilon}\right)^n$.
Proof. Divide B_n on $p^n \ I_{\infty}$ -balls of radius $\frac{1}{2p}$.
Resisting oracle: at each test point reply $f(x) = 0$.
Assume, $N < p^n$. Then, \exists ball with no questions. Hence, we can take
 $f^* = -\frac{L}{2p}$. Hence, $\epsilon \ge \frac{L}{2p}$.

Corollary: Uniform Grid method is worst-case optimal.

Nonsmooth Convex Minimization (NCM)

Problem: $f^* = \min_{x} \{f(x) : x \in Q\}$, where

• $Q \subseteq R^n$ is a convex set: $x, y \in Q \Rightarrow [x, y] \in Q$. It is simple.

• f(x) is a sub-differentiable convex function:

$$f(y) \geq f(x) + \langle f'(x), y - x \rangle, \quad x, y \in Q,$$

for certain subgradient $f'(x) \in R^n$.

Oracle: f(x), f'(x) (first order).

Solution: ϵ -approximation in function value.

Main inequality: $\langle f'(x), x - x^* \rangle \ge f(x) - f^* \ge 0$, $\forall x \in Q$.

NB: Anti-subgradient decreases the distance to the optimum.

NCM: Lower Complexity Bounds

Let $Q \equiv \{ \|x\| \le 2R \}$ and $x^{k+1} \in x^0 + \text{Lin}\{f'(x^0), \dots, f'(x^k)\}$. Consider the function $f_m(x) = L \max_{1 \le i \le m} x_i + \frac{\mu}{2} \|x\|^2$ with $\mu = \frac{L}{Rm^{1/2}}$. From the problem: $\min_{\tau} (L\tau + \frac{\mu m}{2}\tau^2)$, we get

$$\tau_* = -\frac{L}{\mu m} = -\frac{R}{m^{1/2}}, \ f_m^* = -\frac{L^2}{2\mu m} = -\frac{LR}{m^{1/2}}, \ \|x^*\|^2 = m\tau_*^2 = R^2.$$

NB: If $x^0 = 0$, then after *k* iterations we can keep $x_i = 0$ for i > k. **Lipschitz continuity:** $f_{k+1}(x^k) - f_{k+1}^* \ge -f_{k+1}^* = \frac{LR}{(k+1)^{1/2}}$. **Strong convexity:** $f_{k+1}(x^k) - f_{k+1}^* \ge -f_{k+1}^* = \frac{L^2}{2(k+1)\cdot\mu}$.

Both lower bounds are <u>exact</u>!

Subgradient Method

Problem:
$$\min_{x \in Q} \{f(x) : g(x) \le 0\},\$$

where Q is a closed convex set, and convex $f, g \in C_L^{0,0}(Q).$
Method If $\frac{g(x^k)}{\|g'(x^k)\|} > h$ then **a**) $x^{k+1} = \pi_Q \left(x^k - \frac{g(x^k)}{\|g'(x^k)\|^2} g'(x^k) \right),\$
else **b**) $x^{k+1} = \pi_Q \left(x^k - \frac{h}{\|f'(x^k)\|} f'(x^k) \right).$
Denote $f_N^* = \min_{0 \le k \le N} \{f(x^k) : k \in \mathbf{b}\}\}.$ Let $N = N_a + N_b.$
Theorem: If $N > \frac{1}{h^2} \|x^0 - x^*\|^2$, then $f_N^* - f^* \le hL.$ $(h = \frac{\epsilon}{L}.)$
Proof: Denote $r_k = \|x^k - x^*\|.$
a): $r_{k+1}^2 - r_k^2 \le -\frac{2g(x^k)}{\|g'(x^k)\|^2} \langle g'(x^k), x^k - x^* \rangle + \frac{g^2(x^k)}{\|g'(x^k)\|^2} \le -h^2.$
b): $r_{k+1}^2 - r_k^2 \le -\frac{2h\langle f'(x^k), x^k - x^* \rangle}{\|f'(x^k)\|} + h^2 \le -\frac{2h}{L}(f(x^k) - f^*) + h^2.$
Thus, $N_b \frac{2h}{L}(f_N^* - f^*) \le r_0^2 + h^2(N_b - N_a) = r_0^2 + h^2(2N_b - N).$

Smooth Convex Minimization (SCM)

Lipschitz-continuous gradient: $||f'(x) - f'(y)|| \le L||x - y||$. Geometric interpretation: for all $x, y \in \text{dom } F$ we have

$$\begin{array}{rcl} 0 & \leq & f(y) - f(x) - \langle f'(x), y - x \rangle \\ & = & \int\limits_{0}^{1} \langle f'(x + \tau(y - x) - f'(x), y - x \rangle dt \leq \frac{L}{2} \|x - y\|^2. \end{array}$$

Sufficient condition: $0 \leq f''(x) \leq L \cdot I_n$, $x \in \text{dom } f$. Equivalent definition:

 $f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{1}{2L} \| f'(x) - f'(y) \|^2.$ Hint: Prove first that $f(x) - f^* \ge \frac{1}{2L} \| f'(x) \|^2.$

SCM: Lower complexity bounds

Consider the family of functions
$$(k \le n)$$
:
 $f_k(x) = \frac{1}{2} \left[x_1^2 + \sum_{i=1}^{k-1} (x_i - x_{i+1})^2 + x_k^2 \right] - x_1 \equiv \frac{1}{2} \langle A_k x, x \rangle - x_1.$
Let $R_k^n = \{x \in \mathbb{R}^n : x_i = 0, i > k\}$. Then $f_{k+p}(x) = f_k(x), x \in \mathbb{R}_k^n$.
Clearly, $0 \le \langle A_k h, h \rangle \le h_1^2 + \sum_{i=1}^{k-1} 2(h_i^2 + h_{i+1}^2) + h_k^2 \le 4 \|h\|^2$,
 $A_k = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & \\ & \ddots & & \ddots & \\ 0 & 0 & -1 & 2 \end{pmatrix} k \text{ lines}$
 $A_k = \begin{pmatrix} 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \\ & \ddots & & \ddots & \\ 0 & 0 & -1 & 2 \end{pmatrix} k \text{ lines}$,

Hence,
$$A_k x = e_1$$
 has the solution $\bar{x}_i^k = \begin{cases} \frac{k+1-i}{k+1}, & 1 \le i \le k, \\ 0, & i > k. \end{cases}$.
Thus $f_k^* = \frac{1}{2} \langle A_k \bar{x}^k, \bar{x}^k \rangle - \langle e_1, \bar{x}^k \rangle = -\frac{1}{2} \langle e_1, \bar{x}^k \rangle = -\frac{k}{2(k+1)}, \text{ and}$
 $\| \bar{x}^k \|^2 = \sum_{i=1}^k \left(\frac{k+1-i}{k+1} \right)^2 = \frac{1}{(k+1)^2} \sum_{i=1}^k i^2 = \frac{k(2k+1)}{6(k+1)}.$
Let $x^0 = 0$ and $p \le n$ is fixed.
Lemma. If $x^k \in \mathcal{L}_k \stackrel{\text{def}}{=} \text{Lin} \{ f_p'(x^0), \dots, f_p'(x^{k-1}) \}$, then $\mathcal{L}_k \subseteq R_k^n$.
Proof: $x^0 = 0 \in R_0^n, f_p'(0) = -e_1 \in R_1^n \Rightarrow x^1 \in R_1^n, f_p'(x_1) \in R_2^n, \square$
Corollary 1: $f_p(x^k) = f_k(x^k) \ge f_k^*$.
Corollary 2: Take $p = 2k + 1$. Then
 $\frac{f_p(x^k) - f_p^*}{L \| x^0 - \bar{x}^p \|^2} \ge \left[-\frac{k}{2(k+1)} + \frac{2k+1}{2(2k+2)} \right] / \left[\frac{(2k+1)(4k+3)}{3(k+1)} \right] = \frac{3}{4(2k+1)(4k+3)}.$
 $\| x^k - \bar{x}^p \|^2 \ge \sum_{i=k+1}^{2k+1} (\bar{x}_i^{2k+1})^2 = \frac{(2k+3)(k+2)}{24(k+1)} \ge \frac{1}{8} \| \bar{x}^p \|^2.$

Some remarks

1. The rate of convergence of *any* Black-Box gradient methods as applied to $f \in C^{1,1}$ cannon be high than $O(\frac{1}{k^2})$.

2. We cannot guarantee any rate of convergence in the argument.

3. Let
$$A = LL^T$$
 and $f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$. Then
 $f(x) - f^* = \frac{1}{2} ||L^T x - d||^2$, where $d = L^T x^*$.

Thus, the residual of the linear system $L^T x = b$ cannot be decreased faster than with the rate $O(\frac{1}{k})$ (provided that we are allowed to multiply by *L* and L^T .)

4. Optimization problems with nontrivial linear equality constraints cannot be solved faster than with the rate $O(\frac{1}{k})$.

Methods for Smooth Minimization with Simple Constraints

Consider the problem: $\min_{x} \{ f(x) : x \in Q \},\$

where convex $f \in C_L^{1,1}(Q)$, and Q is a simple closed convex set (allows projections).

Gradient mapping: for M > 0 define $T_M(x) = \arg\min_{y \in Q} [f(x) + \langle f'(x), y - x \rangle + \frac{M}{2} ||x - y||^2].$ If $M \ge L$, then $f(T_M(x)) \le f(x) + \langle f'(x), T_M(x) - x \rangle + \frac{M}{2} ||x - T_M(x)||^2].$ Reduced gradient: $g_M(x) = M \cdot (x - T_M(x)).$ Since $\langle f'(x) + M(T_M(x) - x), y - T_M(x) \rangle \ge 0$ for all $y \in Q$, $f(x) - f(T_M(x)) \ge \frac{M}{2} ||x - T_M(x)||^2 = \frac{1}{2M} ||g_M(x)||^2, \quad (\to 0)$ $f(y) \ge f(x) + \langle f'(x), T_M(x) - x \rangle + \langle f'(x), y - T_M(x) \rangle$

$$\geq f(T_M(x)) - \frac{1}{2M} \|g_M(x)\|^2 + \langle g_M(x), y - T_M(x) \rangle.$$

Primal Gradient Method (PGM)

Main scheme: $x^0 \in Q$, $x^{k+1} = T_1(x^k)$, k > 0. **Primal interpretation:** $x^{k+1} = \pi_O \left(x^k - \frac{1}{T} f'(x^k) \right).$ Rate of convergence. $f(x^k) - f(x^{k+1}) \ge \frac{1}{2^k} ||g_L(x^k)||^2$. $f(T_L(x)) - f^* \leq \frac{1}{2I} \|g_L(x)\|^2 + \langle g_L(x), T_L(x) - x^* \rangle$ $< \frac{1}{2l}(\|g_l(x)\| + LR)^2 - \frac{L}{2}R^2.$ Hence, $||g_L(x)|| \ge [2L(f(T_L(x)) - f^*) + L^2 R^2]^{1/2} - LR$ $= \frac{2L(f(T_L(x))-f^*)}{[2L(f(T_L(x))-f^*)+L^2R^2]^{1/2}+LR} \geq \frac{c}{R} \cdot (f(T_L(x))-f^*).$ Thus, $f(x^k) - f(x^{k+1}) \ge \frac{c^2}{LP^2} (f(x^{k+1}) - f^*)^2$. Similar situation: $a'(t) = -a^2(t) \Rightarrow a(t) \approx \frac{1}{t}$. **Conclusion:** PGM converges as $O(\frac{1}{\iota})$. This is far from the lower complexity bounds.

Dual Gradient Method (DGM)

$$\begin{aligned} \text{Model:} \quad & \text{Let } \lambda_i^k \geq 0, \, i = 0, \dots, k, \, \text{and } S_k \stackrel{\text{def}}{=} \sum_{i=0}^k \lambda_i^k. \quad \text{Then} \\ & S_k f(y) \geq \mathcal{L}_{\lambda^k}(y) \stackrel{\text{def}}{=} \sum_{i=0}^k \lambda_i^k [f(x^i) + \langle f'(x^i), y - x^i \rangle], \quad y \in Q. \end{aligned} \\ \begin{aligned} & \text{Our method:} \quad x^{k+1} = \arg\min_{y \in Q} \left\{ \psi_k(y) \stackrel{\text{def}}{=} \mathcal{L}_{\lambda^k}(y) + \frac{M}{2} \|y - x^0\|^2 \right\}. \end{aligned} \\ & \text{Let us choose } \lambda_i^k \equiv 1 \text{ and } M = L. \quad \text{We prove by induction} \\ & (*): \quad F_k^* \stackrel{\text{def}}{=} \sum_{i=0}^k f(y^i) \leq \psi_k^* \stackrel{\text{def}}{=} \min_{y \in Q} \psi_k(y). \quad (\leq (k+1)f^* + \frac{L}{2}R^2) \\ & 1. \ k = 0. \ \text{Then } y^0 = T_L(x^0). \end{aligned} \\ & 2. \ \text{Assume } (*) \text{ is true for some } k \geq 0. \quad \text{Then} \\ & \psi_{k+1}^* = \min_{y \in Q} \left[\psi_k(y) + f(x^k) + \langle f'(x^k), y - x^k \rangle \right] \\ & \geq \min_{y \in Q} \left[\psi_k^* + \frac{L}{2} \|y - x^k\|^2 + f(x^k) + \langle f'(x^k), y - x^k \rangle \right]. \end{aligned} \\ & \text{We can take } y^{k+1} = T_L(x_k). \quad \text{Thus, } \frac{1}{k+1} \sum_{i=0}^k f(y^i) \leq f^* + \frac{LR^2}{2(k+1)}. \end{aligned}$$

1. Dual gradient method works with the *model* of the objective function.

2. The minimizing sequence $\{y^k\}$ is not necessary for the algorithmic scheme. We can generate it if necessary.

3. Both primal and dual method have the same rate of convergence $O(\frac{1}{k})$. It is not optimal.

May be we can combine them in order to get a better rate?

Comparing PGM and DGM

Primal Gradient method

- Monotonically improves the current state using the local model of the objective.
- Interpretation: Practitioners, industry.

Dual Gradient Method

- The main goal is to construct a model of the objective.
- It is updated by a new experience collected around the predicted test points (xk).
- Practical verification of the advices (y_k) is not essential for the procedure.
- Interpretation: Science.

Hint: Combination of theory and practice should give better results

Estimating sequences

Def. A sequences $\{\phi_k(x)\}_{k=0}^{\infty}$ and $\{\lambda_k\}_{k=0}^{\infty}$, $\lambda_k \ge 0$ are called the *estimating sequences* if $\lambda_k \to 0$ and $\forall x \in Q$, $k \ge 0$,

$$(*): \quad \phi_k(x) \leq (1-\lambda_k)f(x) + \lambda_k\phi_0(x).$$

Lemma: If $(**): f(x^k) \le \phi_k^* \equiv \min_{x \in Q} \phi_k(x)$, then $f(x^k) - f^* \le \lambda_k [\phi_0(x^*) - f^*] \to 0.$

Proof.
$$f(x^k) \le \phi_k^* = \min_{x \in Q} \phi_k(x) \le \min_{x \in Q} [(1 - \lambda_k)f(x) + \lambda_k \phi_0(x)]$$

 $\le (1 - \lambda_k)f(x^*) + \lambda_k \phi_0(x^*).$

Rate of $\lambda_k \to 0$ defines the rate of $f(x^k) \to f^*$.

Questions

- How to construct the estimating sequences?
- How we can ensure (**)?

Updating estimating sequences

Let
$$\phi_0(x) = \frac{L}{2} ||x - x^0||^2$$
, $\lambda_0 = 1$, $\{y^k\}_{k=0}^{\infty}$ is a sequence in Q , and
 $\{\alpha_k\}_{k=0}^{\infty} : \alpha_k \in (0, 1), \sum_{k=0}^{\infty} \alpha_k = \infty$. Then $\{\phi_k(x)\}_{k=0}^{\infty}, \{\lambda_k\}_{k=0}^{\infty}:$
 $\lambda_{k+1} = (1 - \alpha_k)\lambda_k,$
 $\phi_{k+1}(x) = (1 - \alpha_k)\phi_k(x) + \alpha_k[f(y^k) + \langle f'(y^k), x - y^k \rangle]$

are estimating sequences.

Proof: $\phi_0(x) \le (1 - \lambda_0)f(x) + \lambda_0\phi_0(x) \equiv \phi_0(x)$. If (*) holds for some $k \ge 0$, then

$$\begin{array}{lll} \phi_{k+1}(x) \leq & (1-\alpha_k)\phi_k(x) + \alpha_k f(x) \\ & = & (1-(1-\alpha_k)\lambda_k)f(x) + (1-\alpha_k)(\phi_k(x) - (1-\lambda_k)f(x)) \\ & \leq & (1-(1-\alpha_k)\lambda_k)f(x) + (1-\alpha_k)\lambda_k\phi_0(x) \\ & = & (1-\lambda_{k+1})f(x) + \lambda_{k+1}\phi_0(x). \quad \Box \end{array}$$

Updating the points

Denote
$$\phi_k^* = \min_{x \in Q} \phi_k(x), v^k = \arg\min_{x \in Q} \phi_k(x)$$
. Suppose $\phi_k^* \ge f(x^k)$.
 $\phi_{k+1}^* = \min_{x \in Q} \left\{ (1 - \alpha_k) \phi_k(x) + \alpha_k [f(y^k) + \langle f'(y^k), x - y^k \rangle] \right\} \ge$
 $\min_{x \in Q} \left\{ (1 - \alpha_k) [\phi_k^* + \frac{\lambda_k L}{2} \|x - v_k\|^2] + \alpha_k [f(y^k) + \langle f'(y^k), y - y^k \rangle] \right\}$
 $\ge \min_{x \in Q} \{ f(y^k) + \frac{(1 - \alpha_k) \lambda_k L}{2} \|x - v_k\|^2 + \langle f'(y^k), \alpha_k(x - y^k) + (1 - \alpha_k)(x^k - y^k) \rangle \}$
 $(y_k \stackrel{\text{def}}{=} (1 - \alpha_k) x^k + \alpha_k v^k = x^k + \alpha_k (v^k - x^k))$
 $= \min_{x \in Q} \{ f(y^k) + \frac{(1 - \alpha_k) \lambda_k L}{2} \|x - v_k\|^2 + \alpha_k \langle f'(y^k), x - v^k \rangle \}$
 $= \min_{x \in Q} \{ f(y^k) + \frac{(1 - \alpha_k) \lambda_k L}{2\alpha_k^2} \|y - y_k\|^2 + \langle f'(y^k), y - y^k \rangle \} \stackrel{(?)}{\ge} f(x^{k+1})$
Answer: $\alpha_k^2 = (1 - \alpha_k) \lambda_k$. $x_{k+1} = T_L(y_k)$.

Optimal method

Choose
$$v^0 = x^0 \in Q$$
, $\lambda_0 = 1$, $\phi_0(x) = \frac{L}{2} ||x - x^0||^2$.

For $k \ge 0$ iterate:

• Compute
$$\alpha_k$$
: $\alpha_k^2 = (1 - \alpha_k)\lambda_k \equiv \lambda_{k+1}$.

• Define
$$y_k = (1 - \alpha_k)x^k + \alpha_k v^k$$
.

• Compute
$$x^{k+1} = T_L(y^k)$$
.

•
$$\phi_{k+1}(x) = (1 - \alpha_k)\phi_k(x) + \alpha_k[f(y^k) + \langle f'(y^k), x - y^k \rangle].$$

Convergence: Denote $a_k = \lambda_k^{-1/2}$. Then

$$\begin{aligned} a_{k+1} - a_k &= \frac{\lambda_k^{1/2} - \lambda_{k+1}^{1/2}}{\lambda_k^{1/2} \lambda_{k+1}^{1/2}} = \frac{\lambda_k - \lambda_{k+1}}{\lambda_k^{1/2} \lambda_{k+1}^{1/2} (\lambda_k^{1/2} + \lambda_{k+1}^{1/2})} \geq \frac{\lambda_k - \lambda_{k+1}}{2\lambda_k \lambda_{k+1}^{1/2}} = \frac{\alpha_k}{2\lambda_{k+1}^{1/2}} = \frac{1}{2}. \end{aligned}$$

Thus, $a_k \geq 1 + \frac{k}{2}$. Hence, $\lambda_k \leq \frac{4}{(k+2)^2}$.

Interpretation

1. $\phi_k(x)$ accumulates all previously computed information about the objective. This is a current *model* of our problem.

- 2. $v^k = \arg\min_{x \in Q} \phi_k(x)$ is a prediction of the optimal strategy.
- **3.** $\phi_k^* = \phi_k(v^k)$ is an estimate of the optimal value.

4. Acceleration condition: $f(x^k) \le \phi_k^*$. We need a firm, which is at least as good as the best theoretical prediction.

5. Then we create a startup $y^k = (1 - \alpha_k)x^k + \alpha_k v^k$, and allow it to work one year.

6. Theorem: Next year, its performance will be at least as good as the new theoretical prediction. And we can continue!

Acceleration result: 10 years instead 100.

Who is in a right position to arrange **5**? Government, political institutions.