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Standard Complexity Classes

Let data be coded in matrix A, and n be dimension of the problem.

Combinatorial Optimization

NP-hard problems: 2n operations. Solvable in O(p(n)‖A‖).

Fully polynomial approximation schemes: O
(
p(n)
εk

lnα ‖A‖
)

.

Polynomial-time problems: O(p(n) lnα ‖A‖).

Continuous Optimization

Sublinear complexity: O
(
p(n)
εα ‖A‖

β
)

, α, β > 0.

Polynomial-time complexity: O
(
p(n) ln( 1

ε‖A‖)
)
.
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Basic NP-hard problem: Problem of stones

Given n stones of integer weights a1, . . . , an, decide if it is possible to
divide them on two parts of equal weight.

Mathematical formulation

Find a Boolean solution xi = ±1, i = 1, . . . , n, to a single linear equation
n∑

i=1
aixi = 0.

Another variant:
n∑

i=2
aixi = a1.

NB: Solvable in O

(
ln n ·

n∑
i=1
|ai |
)

by FFT transform.
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Immediate consequence: quartic polynomial

Theorem: Minimization of quartic polynomial of n variables is
NP-hard.

Proof: Consider the following function:

f (x) =
n∑

i=1
x4
i −

1
n

(
n∑

i=1
x2
i

)2

+

(
n∑

i=1
aixi

)4

+ (1− x1)4.

The first part is 〈A[x ]2, [x ]2〉, where A = I − 1
nene

T
n � 0 with Aen = 0, and

[x ]2i = x2
i , i = 1, . . . , n.

Thus, f (x) = 0 iff all xi = τ ,
n∑

i=1
aixi = 0, and x1 = 1.

Corollary: Minimization of convex quartic polynomial over the unit sphere
is NP-hard.
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Nonlinear Optimal Control: NP-hard

Problem: min
u
{ f (x(1)) : x ′ = g(x , u), 0 ≤ t ≤ 1, x(0) = x0 }.

Consider g(x , u) = 1
nx · 〈x , u〉 − u.

Lemma. Let ‖x0‖2 = n. Then ‖x(t)‖2 = n, 0 ≤ t ≤ 1.

Proof. Consider g̃(x , u) =
(

xxT

‖x‖2 − I
)
u and let x ′ = g̃(x , u). Then

〈x ′, x〉 = 〈
(

xxT

‖x‖2 − I
)
u, x〉 = 0.

Thus, ‖x(t)‖2 = ‖x0‖2. Same is true for x(t) defined by g .
Note: We have enough degrees of freedom to put x(1) at any position of
the sphere.
Hence, our problem is: min{f (y) : ‖y‖2 = n}.
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Descent direction of nonsmooth nonconvex function

Consider φ(x) =
(

1− 1
γ

)
max

1≤i≤n
|xi | − min

1≤i≤n
|xi |+ |〈a, x〉|,

where a ∈ Zn
+ and γ

def
=

n∑
i=1

ai ≥ 1. Clearly, φ(0) = 0.

Lemma. It is NP-hard to decide if φ(x) < 0 for some x ∈ Rn.
Proof: 1. Assume that σ ∈ Rn with σi = ±1 satisfies 〈a, σ〉 = 0. Then
φ(σ) = − 1

γ < 0.
2. Assume φ(x) < 0 and max

1≤i≤n
|xi | = 1. Denote δ = |〈a, x〉|.

Then |xi | > 1− 1
γ + δ, i = 1, . . . , n.

Denoting σi = signxi , we have σixi > 1− 1
γ + δ. Therefore,

|σi − xi | = 1− σixi < 1
γ − δ, and we conclude that

|〈a, σ〉| ≤ |〈a, x〉|+ |〈a, σ − x〉| ≤ δ + γ max
1≤i≤n

|σi − xi |

< (1− γ)δ + 1 ≤ 1.

Since a ∈ Zn , this is possible iff 〈a, σ〉 = 0.
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Black-box optimization

Oracle: Special unit for computing function value and derivatives at test
points. (0-1-2 order.)

Analytic complexity: Number of calls of oracle, which is necessary
(sufficient) for solving any problem from the class.

(Lower/Upper complexity bounds.)

Solution: ε-approximation of the minimum.

Resisting oracle: creates the worst problem instance for a particular
method.

Starts from “empty” problem.

Answers must be compatible with the description of the problem class.

The bad problem is created after the method stops.
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Bounds for Global Minimization

Problem: f ∗ = min
x
{f (x) : x ∈ Bn}, Bn = {x ∈ Rn : 0 ≤ x ≤ en}.

Problem Class: |f (x)− f (y)| ≤ L‖x − y‖∞ ∀x , y ∈ Bn.

Oracle: f (x) (zero order).

Goal: Find x̄ ∈ Bn: f (x̄)− f ∗ ≤ ε.

Theorem: N(ε) ≥
(

L
2ε

)n
.

Proof. Divide Bn on pn l∞-balls of radius 1
2p .

Resisting oracle: at each test point reply f (x) = 0.
Assume, N < pn. Then, ∃ ball with no questions. Hence, we can take
f ∗ = − L

2p . Hence, ε ≥ L
2p .

Corollary: Uniform Grid method is worst-case optimal.
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Nonsmooth Convex Minimization (NCM)

Problem: f ∗ = min
x
{f (x) : x ∈ Q}, where

Q ⊆ Rn is a convex set: x , y ∈ Q ⇒ [x , y ] ∈ Q. It is simple.

f (x) is a sub-differentiable convex function:

f (y) ≥ f (x) + 〈f ′(x), y − x〉, x , y ∈ Q,

for certain subgradient f ′(x) ∈ Rn.

Oracle: f (x), f ′(x) (first order).

Solution: ε-approximation in function value.

Main inequality: 〈f ′(x), x − x∗〉 ≥ f (x)− f ∗ ≥ 0, ∀x ∈ Q.

NB: Anti-subgradient decreases the distance to the optimum.
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NCM: Lower Complexity Bounds

.
Let Q ≡ {‖x‖ ≤ 2R} and xk+1 ∈ x0 + Lin{f ′(x0), . . . , f ′(xk)}.
Consider the function fm(x) = L max

1≤i≤m
xi + µ

2‖x‖
2 with µ = L

Rm1/2 .

From the problem: min
τ

(
Lτ + µm

2 τ
2
)
, we get

τ∗ = − L
µm = − R

m1/2 , f
∗
m = − L2

2µm = − LR
m1/2 , ‖x∗‖2 = mτ2

∗ = R2.

NB: If x0 = 0, then after k iterations we can keep xi = 0 for i > k .

Lipschitz continuity: fk+1(xk)− f ∗k+1 ≥ −f ∗k+1 = LR
(k+1)1/2 .

Strong convexity: fk+1(xk)− f ∗k+1 ≥ −f ∗k+1 = L2

2(k+1)·µ .

Both lower bounds are exact!
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Subgradient Method

Problem: min
x∈Q
{f (x) : g(x) ≤ 0},

where Q is a closed convex set, and convex f , g ∈ C 0,0
L (Q).

Method If g(xk )
‖g ′(xk )‖ > h then a) xk+1 = πQ

(
xk − g(xk )

‖g ′(xk )‖2 g
′(xk)

)
,

else b) xk+1 = πQ

(
xk − h

‖f ′(xk )‖ f
′(xk)

)
.

Denote f ∗N = min
0≤k≤N

{f (xk) : k ∈ b)}. Let N = Na + Nb.

Theorem: If N > 1
h2 ‖x0 − x∗‖2, then f ∗N − f ∗ ≤ hL. (h = ε

L .)

Proof: Denote rk = ‖xk − x∗‖.

a): r2
k+1 − r2

k ≤ −
2g(xk )
‖g ′(xk )‖2 〈g ′(xk), xk − x∗〉+ g2(xk )

‖g ′(xk )‖2 ≤ −h2.

b): r2
k+1 − r2

k ≤ −
2h〈f ′(xk ),xk−x∗〉
‖f ′(xk )‖ + h2 ≤ −2h

L (f (xk)− f ∗) + h2.

Thus, Nb
2h
L (f ∗N − f ∗) ≤ r2

0 + h2(Nb − Na) = r2
0 + h2(2Nb − N).
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Smooth Convex Minimization (SCM)

Lipschitz-continuous gradient: ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖.
Geometric interpretation: for all x , y ∈ domF we have

0 ≤ f (y)− f (x)− 〈f ′(x), y − x〉

=
1∫

0

〈f ′(x + τ(y − x)− f ′(x), y − x〉dt ≤ L
2‖x − y‖2.

Sufficient condition: 0 � f ′′(x) � L · In, x ∈ dom f .

Equivalent definition:

f (y) ≥ f (x) + 〈f ′(x), y − x〉+ 1
2L‖f

′(x)− f ′(y)‖2.

Hint: Prove first that f (x)− f ∗ ≥ 1
2L‖f

′(x)‖2.
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SCM: Lower complexity bounds

Consider the family of functions (k ≤ n):

fk(x) = 1
2

[
x2

1 +
k−1∑
i=1

(xi − xi+1)2 + x2
k

]
− x1 ≡ 1

2〈Akx , x〉 − x1.

Let Rn
k = {x ∈ Rn : xi = 0, i > k}. Then fk+p(x) = fk(x), x ∈ Rn

k .

Clearly, 0 ≤ 〈Akh, h〉 ≤ h2
1 +

k−1∑
i=1

2(h2
i + h2

i+1) + h2
k ≤ 4‖h‖2,

Ak =



2 −1 0
−1 2 −1

0 −1 2
0

. . . . . .

0
−1 2 −1

0 −1 2


k lines

0n−k,k 0n−k,n−k


,

Yu. Nesterov () Complexity of Black-Box Optimization 14/26February 24, 2012 14 / 26



Hence, Akx = e1 has the solution x̄ki =

{
k+1−i
k+1 , 1 ≤ i ≤ k ,

0, i > k .
.

Thus f ∗k = 1
2〈Ak x̄

k , x̄k〉 − 〈e1, x̄
k〉 = −1

2〈e1, x̄
k〉 = − k

2(k+1) , and

‖ x̄k ‖2=
k∑

i=1

(
k+1−i
k+1

)2
= 1

(k+1)2

k∑
i=1

i2 = k(2k+1)
6(k+1) .

Let x0 = 0 and p ≤ n is fixed.

Lemma. If xk ∈ Lk
def
= Lin{f ′p(x0), . . . , f ′p(xk−1)}, then Lk ⊆ Rn

k .

Proof: x0 = 0 ∈ Rn
0 , f
′
p(0) = −e1 ∈ Rn

1 ⇒ x1 ∈ Rn
1 , f
′
p(x1) ∈ Rn

2 ,�

Corollary 1: fp(xk) = fk(xk) ≥ f ∗k .

Corollary 2: Take p = 2k + 1. Then
fp(xk )−f ∗p
L‖x0−x̄p‖2 ≥

[
− k

2(k+1) + 2k+1
2(2k+2)

]
/
[

(2k+1)(4k+3)
3(k+1)

]
= 3

4(2k+1)(4k+3) .

‖ xk − x̄p ‖2≥
2k+1∑
i=k+1

(x̄2k+1
i )2 = (2k+3)(k+2)

24(k+1) ≥ 1
8‖x̄

p‖2.
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Some remarks

1. The rate of convergence of any Black-Box gradient methods as applied
to f ∈ C 1,1 cannon be high than O( 1

k2 ).

2. We cannot guarantee any rate of convergence in the argument.

3. Let A = LLT and f (x) = 1
2〈Ax , x〉 − 〈b, x〉. Then

f (x)− f ∗ = 1
2‖L

T x − d‖2, where d = LT x∗.

Thus, the residual of the linear system LT x = b cannot be decreased
faster than with the rate O( 1

k )
(provided that we are allowed to multiply by L and LT .)

4. Optimization problems with nontrivial linear equality constraints cannot
be solved faster than with the rate O( 1

k ).
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Methods for Smooth Minimization with Simple Constraints

Consider the problem: min
x
{f (x) : x ∈ Q},

where convex f ∈ C 1,1
L (Q), and Q is a simple closed convex set (allows

projections).

Gradient mapping: for M > 0 define
TM(x) = arg min

y∈Q
[f (x) + 〈f ′(x), y − x〉+ M

2 ‖x − y‖2].

If M ≥ L, then
f (TM(x)) ≤ f (x) + 〈f ′(x),TM(x)− x〉+ M

2 ‖x − TM(x)‖2].

Reduced gradient: gM(x) = M · (x − TM(x)).

Since 〈f ′(x) + M(TM(x)− x), y − TM(x)〉 ≥ 0 for all y ∈ Q,

f (x)− f (TM(x)) ≥ M
2 ‖x − TM(x)‖2 = 1

2M ‖gM(x)‖2, (→ 0)

f (y) ≥ f (x) + 〈f ′(x),TM(x)− x〉+ 〈f ′(x), y − TM(x)〉
≥ f (TM(x))− 1

2M ‖gM(x)‖2 + 〈gM(x), y − TM(x)〉.
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Primal Gradient Method (PGM)

Main scheme: x0 ∈ Q, xk+1 = TL(xk), k ≥ 0.

Primal interpretation: xk+1 = πQ
(
xk − 1

L f
′(xk)

)
.

Rate of convergence. f (xk)− f (xk+1) ≥ 1
2L‖gL(xk)‖2.

f (TL(x))− f ∗ ≤ 1
2L‖gL(x)‖2 + 〈gL(x),TL(x)− x∗〉

≤ 1
2L(‖gL(x)‖+ LR)2 − L

2R
2.

Hence, ‖gL(x)‖ ≥
[
2L(f (TL(x))− f ∗) + L2R2

]1/2 − LR

= 2L(f (TL(x))−f ∗)
[2L(f (TL(x))−f ∗)+L2R2]1/2+LR

≥ c
R · (f (TL(x))− f ∗).

Thus, f (xk)− f (xk+1) ≥ c2

LR2 (f (xk+1)− f ∗)2.

Similar situation: a′(t) = −a2(t)⇒ a(t) ≈ 1
t .

Conclusion: PGM converges as O( 1
k ). This is far from the lower

complexity bounds.
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Dual Gradient Method (DGM)

Model: Let λki ≥ 0, i = 0, . . . , k, and Sk
def
=

k∑
i=0

λki . Then

Sk f (y) ≥ Lλk (y)
def
=

k∑
i=0

λki [f (x i ) + 〈f ′(x i ), y − x i 〉], y ∈ Q.

Our method: xk+1 = arg min
y∈Q

{
ψk(y)

def
= Lλk (y) + M

2 ‖y − x0‖2
}

.

Let us choose λki ≡ 1 and M = L. We prove by induction

(∗) : F ∗k
def
=

k∑
i=0

f (y i ) ≤ ψ∗k
def
= min

y∈Q
ψk(y). (≤ (k + 1)f ∗ + L

2R
2)

1. k = 0. Then y0 = TL(x0).
2. Assume (∗) is true for some k ≥ 0. Then

ψ∗k+1 = min
y∈Q

[
ψk(y) + f (xk) + 〈f ′(xk), y − xk〉

]
≥ min

y∈Q

[
ψ∗k + L

2‖y − xk‖2 + f (xk) + 〈f ′(xk), y − xk〉
]
.

We can take yk+1 = TL(xk). Thus, 1
k+1

k∑
i=0

f (y i ) ≤ f ∗ + LR2

2(k+1) .
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Some remarks

1. Dual gradient method works with the model of the objective function.

2. The minimizing sequence {yk} is not necessary for the algorithmic
scheme. We can generate it if necessary.

3. Both primal and dual method have the same rate of convergence O( 1
k ).

It is not optimal.

May be we can combine them in order to get a better rate?
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Comparing PGM and DGM

Primal Gradient method

Monotonically improves the current state using the local model of the
objective.

Interpretation: Practitioners, industry.

Dual Gradient Method

The main goal is to construct a model of the objective.

It is updated by a new experience collected around the predicted test
points (xk).

Practical verification of the advices (yk) is not essential for the
procedure.

Interpretation: Science.

Hint: Combination of theory and practice should give better results
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Estimating sequences

Def. A sequences {φk(x)}∞k=0 and {λk}∞k=0, λk ≥ 0 are called the
estimating sequences if λk → 0 and ∀x ∈ Q, k ≥ 0,

(∗) : φk(x) ≤ (1− λk)f (x) + λkφ0(x).

Lemma: If (∗∗) : f (xk) ≤ φ∗k ≡ min
x∈Q

φk(x), then

f (xk)− f ∗ ≤ λk [φ0(x∗)− f ∗]→ 0.

Proof. f (xk) ≤ φ∗k = min
x∈Q

φk(x) ≤ min
x∈Q

[(1− λk)f (x) + λkφ0(x)]

≤ (1− λk)f (x∗) + λkφ0(x∗). �

Rate of λk → 0 defines the rate of f (xk)→ f ∗.

Questions

How to construct the estimating sequences?

How we can ensure (**)?
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Updating estimating sequences

Let φ0(x) = L
2‖x − x0‖2, λ0 = 1, {yk}∞k=0 is a sequence in Q, and

{αk}∞k=0 : αk ∈ (0, 1),
∞∑
k=0

αk =∞. Then {φk(x)}∞k=0, {λk}∞k=0:

λk+1 = (1− αk)λk ,

φk+1(x) = (1− αk)φk(x) + αk [f (yk) + 〈f ′(yk), x − yk〉]
are estimating sequences.
Proof: φ0(x) ≤ (1− λ0)f (x) + λ0φ0(x) ≡ φ0(x).
If (*) holds for some k ≥ 0, then

φk+1(x) ≤ (1− αk)φk(x) + αk f (x)
= (1− (1− αk)λk)f (x) + (1− αk)(φk(x)− (1− λk)f (x))
≤ (1− (1− αk)λk)f (x) + (1− αk)λkφ0(x)
= (1− λk+1)f (x) + λk+1φ0(x). �
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Updating the points

Denote φ∗k = min
x∈Q

φk(x), vk = arg min
x∈Q

φk(x). Suppose φ∗k ≥ f (xk).

φ∗k+1 = min
x∈Q

{
(1− αk)φk(x) + αk [f (yk) + 〈f ′(yk), x − yk〉]

}
≥

min
x∈Q

{
(1− αk)[φ∗k + λkL

2 ‖x − vk‖2] + αk [f (yk) + 〈f ′(yk), y − yk〉]
}

≥ min
x∈Q
{f (yk) + (1−αk )λkL

2 ‖x − vk‖2

+〈f ′(yk), αk(x − yk) + (1− αk)(xk − yk)〉}
(yk

def
= (1− αk)xk + αkv

k = xk + αk(vk − xk))

= min
x∈Q
{f (yk) + (1−αk )λkL

2 ‖x − vk‖2 + αk〈f ′(yk), x − vk〉}

= min
y=xk+αk (x−xk )

x∈Q

{f (yk) + (1−αk )λkL
2α2

k
‖y − yk‖2 + 〈f ′(yk), y − yk〉}

(?)

≥ f (xk+1)

Answer: α2
k = (1− αk)λk . xk+1 = TL(yk).
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Optimal method

Choose v 0 = x0 ∈ Q, λ0 = 1, φ0(x) =
L
2
‖x − x0‖2.

For k ≥ 0 iterate:

Compute αk : α2
k = (1− αk)λk ≡ λk+1.

Define yk = (1− αk)xk + αkv
k .

Compute xk+1 = TL(yk).

φk+1(x) = (1− αk)φk(x) + αk [f (yk) + 〈f ′(yk), x − yk〉].

Convergence: Denote ak = λ
−1/2
k . Then

ak+1 − ak =
λ

1/2
k −λ

1/2
k+1

λ
1/2
k λ

1/2
k+1

= λk−λk+1

λ
1/2
k λ

1/2
k+1(λ

1/2
k +λ

1/2
k+1)
≥ λk−λk+1

2λkλ
1/2
k+1

= αk

2λ
1/2
k+1

= 1
2 .

Thus, ak ≥ 1 + k
2 . Hence, λk ≤ 4

(k+2)2 .
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Interpretation

1. φk(x) accumulates all previously computed information about the
objective. This is a current model of our problem.
2. vk = arg min

x∈Q
φk(x) is a prediction of the optimal strategy.

3. φ∗k = φk(vk) is an estimate of the optimal value.

4. Acceleration condition: f (xk) ≤ φ∗k . We need a firm, which is at
least as good as the best theoretical prediction.
5. Then we create a startup yk = (1−αk)xk +αkv

k , and allow it to work
one year.

6. Theorem: Next year, its performance will be at least as good as the
new theoretical prediction. And we can continue!

Acceleration result: 10 years instead 100.

Who is in a right position to arrange 5? Government, political
institutions.
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